Abstract
One-dimensional (1D) semiconducting heterostructures have been widely studied for optoelectronics applications because of their unique geometry and attractive physical properties. In this study, we successfully synthesized 1D ZnS/CdS heterostructures, which can be used to fabricate high performance ultraviolet/visible photodetectors. Due to the separation of photo-generated electron-hole pairs, the resultant photodetector showed excellent photoresponse properties, including ultrahigh Ion/Ioff ratios (up to 105) and specific detectivity (2.23 × 1014 Jones), relatively fast response speed (5 ms), good stability and reproducibility. Moreover, the as-fabricated flexible photodetectors showed great mechanical stability under different bending conditions. Our results revealed the possibility of 1D ZnS/CdS heterostructures for application in the detection of UV and visible light. The main advantages of the heterostructures have great potential application for future optoelectronic devices.
Original language | English |
---|---|
Pages (from-to) | 5219-5225 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 8 |
Issue number | 9 |
DOIs | |
Publication status | Published - 7 Mar 2016 |
Externally published | Yes |