TY - JOUR
T1 - Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes
AU - Mo, Runwei
AU - Du, Ying
AU - Rooney, David
AU - Ding, Guqiao
AU - Sun, Kening
N1 - Publisher Copyright:
© 2016, Nature Publishing Group. All rights reserved.
PY - 2016/1/28
Y1 - 2016/1/28
N2 - Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (∼10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.
AB - Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (∼10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.
UR - http://www.scopus.com/inward/record.url?scp=84955577752&partnerID=8YFLogxK
U2 - 10.1038/srep19843
DO - 10.1038/srep19843
M3 - Article
AN - SCOPUS:84955577752
SN - 2045-2322
VL - 6
JO - Scientific Reports
JF - Scientific Reports
M1 - 19843
ER -