Two Birds with One Stone: A Link Prediction Model for Knowledge Hypergraph Based on Fully-Connected Tensor Decomposition

Jun Pang, Hong Chao Qin*, Yan Liu, Xiao Qi Liu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Knowledge hypergraph link prediction aims to predict missing relationships in knowledge hypergraphs and is one of the effective methods for graph completion. The existing optimal knowledge hypergraph link method based on tensor decomposition, i.e., GETD (Generalized Model based on Tucker Decomposition and Tensor Ring Decomposition), has achieved good performance by extending Tucker decomposition, but there are still two main problems: (1)GETD does not establish operations or connections between any two tensor factors, resulting in limited representation of tensor correlation (referred to as finiteness); (2)The tensor decomposed by GETD is highly sensitive to the arrangement of tensor patterns (referred to as sensitivity). In response to the above issues, we propose a knowledge hypergraph link prediction model, called GETD+, based on fully-connected tensor decomposition(FCTN). By combining Tucker decomposition and FCTN, a multi-linear operation/connection is established for any two factor tensors obtained from tensor decomposition. This not only enhances the representation ability of tensors, but also eliminates sensitivity to tensor pattern arrangement. Finally, the superiority of the GETD+ model was verified through a large number of experiments on real knowledge hypergraph datasets and knowledge graph datasets.

Original languageEnglish
Title of host publicationAdvanced Data Mining and Applications - 19th International Conference, ADMA 2023, Proceedings
EditorsXiaochun Yang, Bin Wang, Heru Suhartanto, Guoren Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
PublisherSpringer Science and Business Media Deutschland GmbH
Pages78-90
Number of pages13
ISBN (Print)9783031466632
DOIs
Publication statusPublished - 2023
Event19th International Conference on Advanced Data Mining and Applications, ADMA 2023 - Shenyang, China
Duration: 21 Aug 202323 Aug 2023

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume14177 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th International Conference on Advanced Data Mining and Applications, ADMA 2023
Country/TerritoryChina
CityShenyang
Period21/08/2323/08/23

Keywords

  • Knowledge hypergraph
  • Link prediction
  • Tensor Decomposition

Fingerprint

Dive into the research topics of 'Two Birds with One Stone: A Link Prediction Model for Knowledge Hypergraph Based on Fully-Connected Tensor Decomposition'. Together they form a unique fingerprint.

Cite this