Abstract
In response to the increasing demand of ethylene, electrochemical ethane nonoxidative dehydrogenation (EENDH) to ethylene by protonic ceramic electrolysis cells (PCECs) is developed. However, existing anode materials exhibit poor proton conductivity and limited catalytic activity. Herein, a novel Sr1.95Fe1.4Co0.1Mo0.4Zr0.1O6-δ (SFCMZ) anode is prepared as PCECs anode for EENDH. Zr doping increases the oxygen vacancies and enhances the proton conductivity of SFCMZ. Moreover, an alloy-oxide heterostructure (CoFe@SFCMZ) is formed through in-situ exsolution of CoFe alloy nanoparticles under reduction conditions, generating abundant oxygen vacancies and improving its catalytic activity. CoFe@SFCMZ cell achieves an electrolysis current density of 0.87 A/cm2 at 700 °C under 1.6 V, with an ethane conversion rate of 34.22% and corresponding ethylene selectivity of 93.4%. These results demonstrate that CoFe@SFCMZ anode exhibits excellent electrocatalytic activity, suggesting promising applications for EENDH.
Original language | English |
---|---|
Article number | 110567 |
Journal | Chinese Chemical Letters |
Volume | 36 |
Issue number | 4 |
DOIs | |
Publication status | Published - Apr 2025 |
Keywords
- Anode
- Electrochemical ethane nonoxidative dehydrogenation
- Ethylene
- Heterostructure
- Protonic ceramic electrolysis cells