TY - JOUR
T1 - Transport of carbon nanoparticles in porous media and its effect on the transport of concurrent contaminants
AU - Liu, Guansheng
AU - Zhan, Weiyong
AU - Wu, Yongming
AU - Zhong, Hua
N1 - Publisher Copyright:
© 2023 Taylor & Francis Group, LLC.
PY - 2023
Y1 - 2023
N2 - The extensive use of carbon nanoparticles (CNPs) inevitably results in their introduction into soil and groundwater, which poses a significant risk to the safety of these natural resources. Therefore, it is crucial to understand the transport behavior of CNPs in the subsurface environment and how it affects the transport of co-contaminants such as heavy metals, organic compounds, nano-plastics, engineered metal and metal oxide nanoparticles. This review focuses on recent advancements in research on the transport behaviors of CNPs in porous media and its effect on the transport of co-contaminants, with respect to the mechanisms associated with CNPs transport and the mechanisms of action of CNPs on co-contaminant transport, as well as the factors that influence these processes. Results of the existing research indicate that aggregation, attachment, detachment, straining, blocking and ripening are the primary processes governing CNPs transport due to their unique physiochemistry. CNPs can either act as carriers, facilitating the transport of co-contaminants, or as competitors, hindering the deposition of co-contaminants. Additionally, they can serve as collectors for co-contaminant deposition or co-deposit with co-contaminants, inhibiting their transport. The interactions between CNPs, co-contaminants, and the medium determine the exact role played by CNPs in co-contaminant transport. The processes of CNPs transport and its effect on co-contaminant transport are affected by the physicochemical properties of CNPs and porous media, as well as the chemistry and hydrodynamics of groundwater. This review article is of great significance for risk assessment of CNPs in soil and groundwater.
AB - The extensive use of carbon nanoparticles (CNPs) inevitably results in their introduction into soil and groundwater, which poses a significant risk to the safety of these natural resources. Therefore, it is crucial to understand the transport behavior of CNPs in the subsurface environment and how it affects the transport of co-contaminants such as heavy metals, organic compounds, nano-plastics, engineered metal and metal oxide nanoparticles. This review focuses on recent advancements in research on the transport behaviors of CNPs in porous media and its effect on the transport of co-contaminants, with respect to the mechanisms associated with CNPs transport and the mechanisms of action of CNPs on co-contaminant transport, as well as the factors that influence these processes. Results of the existing research indicate that aggregation, attachment, detachment, straining, blocking and ripening are the primary processes governing CNPs transport due to their unique physiochemistry. CNPs can either act as carriers, facilitating the transport of co-contaminants, or as competitors, hindering the deposition of co-contaminants. Additionally, they can serve as collectors for co-contaminant deposition or co-deposit with co-contaminants, inhibiting their transport. The interactions between CNPs, co-contaminants, and the medium determine the exact role played by CNPs in co-contaminant transport. The processes of CNPs transport and its effect on co-contaminant transport are affected by the physicochemical properties of CNPs and porous media, as well as the chemistry and hydrodynamics of groundwater. This review article is of great significance for risk assessment of CNPs in soil and groundwater.
KW - Binoy Sarkar and Lena Q. Ma
KW - Carbon nanoparticles
KW - contaminants
KW - cotransport
KW - porous media
KW - transport
UR - http://www.scopus.com/inward/record.url?scp=85177658202&partnerID=8YFLogxK
U2 - 10.1080/10643389.2023.2285694
DO - 10.1080/10643389.2023.2285694
M3 - Review article
AN - SCOPUS:85177658202
SN - 1064-3389
JO - Critical Reviews in Environmental Science and Technology
JF - Critical Reviews in Environmental Science and Technology
ER -