Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung Chang Chien, Yi Cai, Xin Xiao, Xinying Li

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

We experimentally demonstrate a highly filtering-tolerant multi-modulus equalization (MMEQ) process for very aggressively spectrum-shaped 9-ary quadrature-amplitude-modulation (9-QAM)-like polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signal to achieve 400-Gb/s wavelength-division-multiplexing (WDM) channels on the 100-GHz grid for ultra-long-haul reach and high tolerance of the filter narrowing effect caused by reconfigurable optical add-drop multiplexers (ROADMs). We successfully transmitted 8 channels 480-Gb/s super-Nyquist (channel occupancy much less than signal baud rate) WDM signals at 100-GHz grid over 25 × 200 km conventional single-mode fiber-28 (SMF-28) with post Raman amplification and 25 ROADMs at a net spectral efficiency (SE) of 4b/s/Hz, after excluding the 20% soft-decision forward-error-correction (FEC) overhead. The system performance is significantly enhanced by the MMEQ based on 9-QAM-like constellations compared to the conventional 4 point QPSK constellation. A record transmission distance over conventional SMF-28 with a large number of ROADMs is firstly reported on the 400-Gb/s channels at 100-GHz grid.

Original languageEnglish
Pages (from-to)15686-15691
Number of pages6
JournalOptics Express
Volume21
Issue number13
DOIs
Publication statusPublished - 1 Jul 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs'. Together they form a unique fingerprint.

Cite this