Trajectory optimization of humanoid robots swinging leg

Zhou Luo, Xuechao Chen*, Zhangguo Yu, Qiang Huang, Libo Meng, Qingqing Li, Weimin Zhang, Wenjuan Guo, Aiguo Ming

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Increased walking stability and energy efficiency are both important factors for enhancement of the performance of a biped robot. However, it is difficult to derive the optimal control law that is required using optimal control theory because of the strong nonlinearity and the strong coupling of the robot dynamics equation. Use of numerical methods is one effective way to design an optimal control law. This paper presents a method for optimization of the trajectory of a biped robot's swinging leg that is based on a Gaussian pseudospectral method. We first establish a Lagrange optimization function to optimize both the torque and speed during the walking process. By giving different weights to the torque and the speed, optimization of the different targets can be realized, and as a result, a reduction in the velocity can also change the amplitude of the joint motion fluctuations. The effectiveness of the proposed method is demonstrated via simulations and Experiments.

Original languageEnglish
Title of host publication2017 IEEE-RAS 17th International Conference on Humanoid Robotics, Humanoids 2017
PublisherIEEE Computer Society
Pages359-364
Number of pages6
ISBN (Electronic)9781538646786
DOIs
Publication statusPublished - 22 Dec 2017
Event17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017 - Birmingham, United Kingdom
Duration: 15 Nov 201717 Nov 2017

Publication series

NameIEEE-RAS International Conference on Humanoid Robots
ISSN (Print)2164-0572
ISSN (Electronic)2164-0580

Conference

Conference17th IEEE-RAS International Conference on Humanoid Robotics, Humanoids 2017
Country/TerritoryUnited Kingdom
CityBirmingham
Period15/11/1717/11/17

Fingerprint

Dive into the research topics of 'Trajectory optimization of humanoid robots swinging leg'. Together they form a unique fingerprint.

Cite this