@inproceedings{1b4b1f9f37a64bfdb25acce38a5c3097,
title = "TP-Link: Fine-grained Pre-Training for Text-to-SQL Parsing with Linking Information",
abstract = "In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent Text-to-SQL Parsing by leveraging Linking information. This enhancement is achieved through better representation of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and (ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves state-of-the-art performance on two leading downstream benchmarks (i.e., SParC and CoSQL).",
keywords = "pre-training, semantic parsing, text-to-SQL",
author = "Ziqiang Liu and Shujie Li and Zefeng Cai and Xiangyu Li and Yunshui Li and Lei Zhang and Chengming Li and Xiping Hu and Ruifeng Xu and Min Yang",
note = "Publisher Copyright: {\textcopyright} 2024 ELRA Language Resource Association: CC BY-NC 4.0.; Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 ; Conference date: 20-05-2024 Through 25-05-2024",
year = "2024",
language = "English",
series = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
publisher = "European Language Resources Association (ELRA)",
pages = "16686--16697",
editor = "Nicoletta Calzolari and Min-Yen Kan and Veronique Hoste and Alessandro Lenci and Sakriani Sakti and Nianwen Xue",
booktitle = "2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings",
}