Towards Hierarchical Policy Learning for Conversational Recommendation with Hypergraph-based Reinforcement Learning

Sen Zhao, Wei Wei*, Yifan Liu, Ziyang Wang, Wendi Li, Xian Ling Mao, Shuai Zhu, Minghui Yang, Zujie Wen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Citations (Scopus)

Abstract

Conversational recommendation systems (CRS) aim to timely and proactively acquire user dynamic preferred attributes through conversations for item recommendation. In each turn of CRS, there naturally have two decision-making processes with different roles that influence each other: 1) director, which is to select the follow-up option (i.e., ask or recommend) that is more effective for reducing the action space and acquiring user preferences; and 2) actor, which is to accordingly choose primitive actions (i.e., asked attribute or recommended item) that satisfy user preferences and give feedback to estimate the effectiveness of the director's option. However, existing methods heavily rely on a unified decision-making module or heuristic rules, while neglecting to distinguish the roles of different decision procedures, as well as the mutual influences between them. To address this, we propose a novel Director-Actor Hierarchical Conversational Recommender (DAHCR), where the director selects the most effective option, followed by the actor accordingly choosing primitive actions that satisfy user preferences. Specifically, we develop a dynamic hypergraph to model user preferences and introduce an intrinsic motivation to train from weak supervision over the director. Finally, to alleviate the bad effect of model bias on the mutual influence between the director and actor, we model the director's option by sampling from a categorical distribution. Extensive experiments demonstrate that DAHCR outperforms state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
EditorsEdith Elkind
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2459-2467
Number of pages9
ISBN (Electronic)9781956792034
DOIs
Publication statusPublished - 2023
Event32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Duration: 19 Aug 202325 Aug 2023

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2023-August
ISSN (Print)1045-0823

Conference

Conference32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Country/TerritoryChina
CityMacao
Period19/08/2325/08/23

Fingerprint

Dive into the research topics of 'Towards Hierarchical Policy Learning for Conversational Recommendation with Hypergraph-based Reinforcement Learning'. Together they form a unique fingerprint.

Cite this