TopoSeg: Topology-Aware Nuclear Instance Segmentation

Hongliang He*, Jun Wang, Pengxu Wei, Fan Xu, Xiangyang Ji, Chang Liu*, Jie Chen*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Citations (Scopus)

Abstract

Nuclear instance segmentation has been critical for pathology image analysis in medical science, e.g., cancer diagnosis. Current methods typically adopt pixel-wise optimization for nuclei boundary exploration, where rich structural information could be lost for subsequent quantitative morphology assessment. To address this issue, we develop a topology-aware segmentation approach, termed TopoSeg, which exploits topological structure information to keep the predictions rational, especially in common situations with densely touching and overlapping nucleus instances. Concretely, TopoSeg builds on a topology-aware module (TAM), which encodes dynamic changes of different topology structures within the three-class probability maps (inside, boundary, and background) of the nuclei to persistence barcodes and makes the topology-aware loss function. To efficiently focus on regions with high topological errors, we propose an adaptive topology-aware selection (ATS) strategy to enhance the topology-aware optimization procedure further. Experiments on three nuclear instance segmentation datasets justify the superiority of TopoSeg, which achieves state-of-the-art performance. The code is available at https://github.com/hhlisme/toposeg.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages21250-21259
Number of pages10
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 2023
Externally publishedYes
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'TopoSeg: Topology-Aware Nuclear Instance Segmentation'. Together they form a unique fingerprint.

Cite this