@inproceedings{e74ebb25458741869a249cb9cc304ad1,
title = "TiAM-GAN: Titanium Alloy Microstructure Image Generation Network",
abstract = "The generation of titanium alloy microstructure images through mechanical properties is of great value to the research and production of titanium alloy materials. The appearance of GAN provides the possibility for image generation. However, there is currently no work related to handling multiple continuous labels for microstructure images. This paper presents a multi-label titanium alloy microstructure image generation network(TiAM-GAN). The TiAM-GAN proposed in this paper contains two sub-networks, a generation network for simple textures, which is based on the existing generation adversarial network, we reconstruct the loss function for multi-label continuous variables and deduce the error bound. Another microstructure image generation network for complex textures uses a mixture density network to learn the labels-to-noise mapping, and a deep convolution generation adversarial network is used to learn the noise-to-image mapping, then the noise output by the mixture density network will input to the deep convolution generation adversarial network to generate the image. Finally, we compared our method with existing methods qualitatively and quantitatively, which shows our method can achieve better results.",
keywords = "Generative Adversarial Network, Image Generation, Multi-Label, Titanium Alloy Microstructure",
author = "Zhixuan Zhang and Fusheng Jin and Haichao Gong and Qunbo Fan",
note = "Publisher Copyright: {\textcopyright} 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.; 6th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2023 ; Conference date: 13-10-2023 Through 15-10-2023",
year = "2024",
doi = "10.1007/978-981-99-8435-0\_7",
language = "English",
isbn = "9789819984343",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "84--96",
editor = "Qingshan Liu and Hanzi Wang and Rongrong Ji and Zhanyu Ma and Weishi Zheng and Hongbin Zha and Xilin Chen and Liang Wang",
booktitle = "Pattern Recognition and Computer Vision - 6th Chinese Conference, PRCV 2023, Proceedings",
address = "Germany",
}