Abstract
Conductive carbon scaffolds are efficient and effective to build advanced carbon/sulfur composite cathodes for lithium-sulfur (Li-S) batteries. However, the areal sulfur loading is commonly less than 4.0 mg cm-2, which limits the energy density and practical application of Li-S cells. In this contribution, three-dimensional (3D) aluminum foam/carbon nanotube (CNT) scaffolds were applied as the current collectors to build long- and short-range electron pathways and provided enough space for high sulfur loading. The sulfur loading amount on the 3D current collectors ranged from 7.0 to 12.5 mg cm -2. A high initial discharge capacity of 6.02 mAh cm-2 (860 mAh g-1) was achieved on an electrode with an improved sulfur loading of 7.0 mg cm-2. Therefore, the combination of 3D long-range current collectors and short-range CNT conductive scaffold provides an efficient and effective route to make full use of sulfur with a very high sulfur loading amount in a Li-S cell.
Original language | English |
---|---|
Pages (from-to) | 264-270 |
Number of pages | 7 |
Journal | Journal of Power Sources |
Volume | 261 |
DOIs | |
Publication status | Published - 1 Sept 2014 |
Externally published | Yes |
Keywords
- Carbon nanotube
- Current collector
- Electron pathway
- Lithium-sulfur battery