TY - JOUR
T1 - The upregulation of PYCR2 is associated with aggressive colon cancer progression and a poor prognosis
AU - Wang, Sitong
AU - Gu, Linaer
AU - Huang, Lili
AU - Fang, Juemin
AU - Liu, Zhuqing
AU - Xu, Qing
N1 - Publisher Copyright:
© 2021 Elsevier Inc.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - PYCR2 has previously been shown to be related to a range of malignancies including hepatocellular carcinoma and melanoma, but its mechanistic functions and prognostic relevance in colon cancer patients remain to be defined. Herein, we used the Oncomine, Human Protein Atlas, The Cancer Genome Atlas (TCGA), and UALCAN databases to explore the expression of this gene in different human cancer, after which the relationship between PYCR2 expression and patient clinicopathologic characteristics was evaluated. We utilized an in vitro approach to evaluate the association between PYCR2 expression and colon cancer cell proliferation, migration, invasion, and tumor microsphere formation. The cell apoptosis was analyzed by flow cytometry. Gene set enrichment analysis (GSEA) approaches were additionally used to probe signaling pathways related to PYCR2. These analyses confirmed that PYCR2 was upregulated in several cancer types including colon cancer, with such upregulation correlating with a poor patient prognosis and with malignant clinicopathological characteristics. PYCR2 expression was identified as an independent predictor of colon cancer patients’ survival, and in vitro analyses suggested that knocking down this gene was sufficient to disrupt the proliferative, migratory, invasive, and microsphere formation activities of colon cancer cells. Moreover, shPYCR2 transfection induced colon cancer cell apoptosis. GSEA suggested that high PYCR2 expression correlates with the differential enrichment of the Wnt β-catenin signaling, MYC targets, RNA polymerase, and Notch signaling pathways. Overall, these data indicate that PYCR2 is an important mediator of tumor progression and metastasis, and suggest that it may be a valuable prognostic indicator for colon cancer patient evaluation.
AB - PYCR2 has previously been shown to be related to a range of malignancies including hepatocellular carcinoma and melanoma, but its mechanistic functions and prognostic relevance in colon cancer patients remain to be defined. Herein, we used the Oncomine, Human Protein Atlas, The Cancer Genome Atlas (TCGA), and UALCAN databases to explore the expression of this gene in different human cancer, after which the relationship between PYCR2 expression and patient clinicopathologic characteristics was evaluated. We utilized an in vitro approach to evaluate the association between PYCR2 expression and colon cancer cell proliferation, migration, invasion, and tumor microsphere formation. The cell apoptosis was analyzed by flow cytometry. Gene set enrichment analysis (GSEA) approaches were additionally used to probe signaling pathways related to PYCR2. These analyses confirmed that PYCR2 was upregulated in several cancer types including colon cancer, with such upregulation correlating with a poor patient prognosis and with malignant clinicopathological characteristics. PYCR2 expression was identified as an independent predictor of colon cancer patients’ survival, and in vitro analyses suggested that knocking down this gene was sufficient to disrupt the proliferative, migratory, invasive, and microsphere formation activities of colon cancer cells. Moreover, shPYCR2 transfection induced colon cancer cell apoptosis. GSEA suggested that high PYCR2 expression correlates with the differential enrichment of the Wnt β-catenin signaling, MYC targets, RNA polymerase, and Notch signaling pathways. Overall, these data indicate that PYCR2 is an important mediator of tumor progression and metastasis, and suggest that it may be a valuable prognostic indicator for colon cancer patient evaluation.
KW - Clinical significance
KW - Colon cancer
KW - Prognosis
KW - PYCR2
UR - http://www.scopus.com/inward/record.url?scp=85111256023&partnerID=8YFLogxK
U2 - 10.1016/j.bbrc.2021.07.084
DO - 10.1016/j.bbrc.2021.07.084
M3 - Article
C2 - 34332325
AN - SCOPUS:85111256023
SN - 0006-291X
VL - 572
SP - 20
EP - 26
JO - Biochemical and Biophysical Research Communications
JF - Biochemical and Biophysical Research Communications
ER -