Abstract
Cross-linked polyethylene (XLPE) insulation is used in most advanced power cable technology. However, in traditional cross-linking, the conductivity of the cross-linking system sharply increases due to the presence of additives (antioxidants and cross-linked agents). Therefore, reducing the number of antioxidants to further reduce conductivity is a very promising method. The structural design of a new dual-functional antioxidant 5-allyloxy-2-hydroxyl-3-tert-butylbenzophenone (5ATB) has been established. The antioxidant behavior and grafting reaction of 5ATB after photocatalysis under ultraviolet (UV) conditions were further studied using density functional theory (DFT). The reaction potential energy information of the six reaction channels at the B3LYP/6-311+G(d,p) level were obtained. The calculation results indicated that the reaction Gibbs energy barrier of 5ATB with O2 is approximately 0.48 eV lower than that of the polyethylene chain with O2 to achieve an anti-oxidative effect. Furthermore, the reaction-active site of 5ATB accepting H is located on the C of CH2 in a C=C double bond, as demonstrated by an analysis of NBO charge populations. The proposed mechanism has the potential to further expand the design concept of insulation materials for advanced future power cables.
Original language | English |
---|---|
Article number | 546 |
Journal | Polymers |
Volume | 17 |
Issue number | 4 |
DOIs | |
Publication status | Published - Feb 2025 |
Keywords
- anti-oxidation mechanism
- antioxidant
- cross-linked polyethylene
- grafting reaction
- power cable