TY - JOUR
T1 - The multicolour size-Ramsey number of powers of paths
AU - Han, Jie
AU - Jenssen, Matthew
AU - Kohayakawa, Yoshiharu
AU - Mota, Guilherme Oliveira
AU - Roberts, Barnaby
N1 - Publisher Copyright:
© 2020 Elsevier Inc.
PY - 2020/11
Y1 - 2020/11
N2 - Given a positive integer s, a graph G is s-Ramsey for a graph H, denoted G→(H)s, if every s-colouring of the edges of G contains a monochromatic copy of H. The s-colour size-Ramsey number rˆs(H) of a graph H is defined to be rˆs(H)=min{|E(G)|:G→(H)s}. We prove that, for all positive integers k and s, we have rˆs(Pnk)=O(n), where Pnk is the kth power of the n-vertex path Pn.
AB - Given a positive integer s, a graph G is s-Ramsey for a graph H, denoted G→(H)s, if every s-colouring of the edges of G contains a monochromatic copy of H. The s-colour size-Ramsey number rˆs(H) of a graph H is defined to be rˆs(H)=min{|E(G)|:G→(H)s}. We prove that, for all positive integers k and s, we have rˆs(Pnk)=O(n), where Pnk is the kth power of the n-vertex path Pn.
KW - Powers of paths
KW - Ramsey
KW - Size-Ramsey
UR - https://www.scopus.com/pages/publications/85086875958
U2 - 10.1016/j.jctb.2020.06.004
DO - 10.1016/j.jctb.2020.06.004
M3 - Article
AN - SCOPUS:85086875958
SN - 0095-8956
VL - 145
SP - 359
EP - 375
JO - Journal of Combinatorial Theory. Series B
JF - Journal of Combinatorial Theory. Series B
ER -