Terahertz modulation devices based on patterned laser-induced graphene

Zongyuan Wang*, Bin Hu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Laser-induced graphene (LIG) has received extensive attention due to its excellent properties such as high electrical conductivity, high thermal stability and electrical conductivity, simple synthesis, and low manufacturing cost of patterned structures. However, most research on LIG has focused on electrical applications. In this work, we first examine the influence of the substrate on the LIG generated on polyimide, and then fabricate patterned LIG structures, including gratings and Fresnel zone plates for terahertz (THz) wave modulation. The function of the structure is proved through the experiment of the terahertz focal plane imaging system. It is expected that the LIG-based structure can widen the application of THz technology.

Original languageEnglish
Title of host publication2021 International Conference on Optical Instruments and Technology
Subtitle of host publicationOptical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology
EditorsJuan Liu, Baohua Jia, Liangcai Cao, Xincheng Yao, Yongtian Wang, Takanori Nomura
PublisherSPIE
ISBN (Electronic)9781510655591
DOIs
Publication statusPublished - 2022
Event2021 International Conference on Optical Instruments and Technology: Optical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology - Virtual, Online, China
Duration: 8 Apr 202210 Apr 2022

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume12277
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference2021 International Conference on Optical Instruments and Technology: Optical Systems, Optoelectronic Instruments, Novel Display, and Imaging Technology
Country/TerritoryChina
CityVirtual, Online
Period8/04/2210/04/22

Keywords

  • Laser direct writing technology
  • Laser-induced graphene
  • Terahertz

Fingerprint

Dive into the research topics of 'Terahertz modulation devices based on patterned laser-induced graphene'. Together they form a unique fingerprint.

Cite this