TY - JOUR
T1 - Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS2/Graphene Heterostructures
AU - Liu, Mengxi
AU - Shi, Jianping
AU - Li, Yuanchang
AU - Zhou, Xiebo
AU - Ma, Donglin
AU - Qi, Yue
AU - Zhang, Yanfeng
AU - Liu, Zhongfan
N1 - Publisher Copyright:
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2017/10/25
Y1 - 2017/10/25
N2 - The existence of defects in 2D semiconductors has been predicted to generate unique physical properties and markedly influence their electronic and optoelectronic properties. In this work, it is found that the monolayer MoS2 prepared by chemical vapor deposition is nearly defect-free after annealing under ultrahigh vacuum conditions at ≈400 K, as evidenced by scanning tunneling microscopy observations. However, after thermal annealing process at ≈900 K, the existence of dominant single sulfur vacancies and relatively rare vacancy chains (2S, 3S, and 4S) is convinced in monolayer MoS2 as-grown on Au foils. Of particular significance is the revelation that the versatile vacancies can modulate the band structure of the monolayer MoS2, leading to a decrease of the bandgap and an obvious n-doping effect. These results are confirmed by scanning tunneling spectroscopy data as well as first-principles theoretical simulations of the related morphologies and the electronic properties of the various defect types. Briefly, this work should pave a novel route for defect engineering and hence the electronic property modulation of three-atom-thin 2D layered semiconductors.
AB - The existence of defects in 2D semiconductors has been predicted to generate unique physical properties and markedly influence their electronic and optoelectronic properties. In this work, it is found that the monolayer MoS2 prepared by chemical vapor deposition is nearly defect-free after annealing under ultrahigh vacuum conditions at ≈400 K, as evidenced by scanning tunneling microscopy observations. However, after thermal annealing process at ≈900 K, the existence of dominant single sulfur vacancies and relatively rare vacancy chains (2S, 3S, and 4S) is convinced in monolayer MoS2 as-grown on Au foils. Of particular significance is the revelation that the versatile vacancies can modulate the band structure of the monolayer MoS2, leading to a decrease of the bandgap and an obvious n-doping effect. These results are confirmed by scanning tunneling spectroscopy data as well as first-principles theoretical simulations of the related morphologies and the electronic properties of the various defect types. Briefly, this work should pave a novel route for defect engineering and hence the electronic property modulation of three-atom-thin 2D layered semiconductors.
KW - MoS/graphene heterostructures
KW - band structure
KW - defect state
KW - scanning tunneling microscopy/spectroscopy
KW - sulfur vacancy chain
UR - http://www.scopus.com/inward/record.url?scp=85032859554&partnerID=8YFLogxK
U2 - 10.1002/smll.201602967
DO - 10.1002/smll.201602967
M3 - Article
C2 - 28799711
AN - SCOPUS:85032859554
SN - 1613-6810
VL - 13
JO - Small
JF - Small
IS - 40
M1 - 1602967
ER -