TY - JOUR
T1 - Taxi-hailing platforms
T2 - Inform or Assign drivers?
AU - Sun, Luoyi
AU - Teunter, Ruud H.
AU - Hua, Guowei
AU - Wu, Tian
N1 - Publisher Copyright:
© 2020
PY - 2020/12
Y1 - 2020/12
N2 - Online platforms for matching supply and demand, as part of the sharing economy, are becoming increasingly important in practice and have seen a steep increase in academic interest. Especially in the taxi/travel industry, platforms such as Uber, Lyft, and Didi Chuxing have become major players. Some of these platforms, including Didi Chuxing, operate two matching systems: Inform, where multiple drivers receive ride details and the first to respond is selected; and Assign, where the platform assigns the driver nearest to the customer. The Inform system allows drivers to select their destinations, but the Assign system minimizes driver-customer distances. This research is the first to explore: (i) how a platform should allocate customer requests to the two systems and set the maximum matching radius (i.e., customer-driver distance), with the objective to minimize the overall average waiting times for customers; and (ii) how taxi drivers select a system, depending on their varying degrees of preference for certain destinations. Using approximate queuing analysis, we derive the optimal decisions for the platform and drivers. These are applied to real-world data from Didi Chuxing, revealing the following managerial insights. The optimal radius is 1-3 kilometers, and is lower during rush hour. For most considered settings, it is optimal to allocate relatively few rides to the Inform system. Most interestingly, if destination selection becomes more important to the average driver, then the platform should not always allocate more requests to the Inform system. Although this may seem counter-intuitive, allocating too many orders to that system would result in many drivers opting for it, leading to very high waiting times in the Assign system.
AB - Online platforms for matching supply and demand, as part of the sharing economy, are becoming increasingly important in practice and have seen a steep increase in academic interest. Especially in the taxi/travel industry, platforms such as Uber, Lyft, and Didi Chuxing have become major players. Some of these platforms, including Didi Chuxing, operate two matching systems: Inform, where multiple drivers receive ride details and the first to respond is selected; and Assign, where the platform assigns the driver nearest to the customer. The Inform system allows drivers to select their destinations, but the Assign system minimizes driver-customer distances. This research is the first to explore: (i) how a platform should allocate customer requests to the two systems and set the maximum matching radius (i.e., customer-driver distance), with the objective to minimize the overall average waiting times for customers; and (ii) how taxi drivers select a system, depending on their varying degrees of preference for certain destinations. Using approximate queuing analysis, we derive the optimal decisions for the platform and drivers. These are applied to real-world data from Didi Chuxing, revealing the following managerial insights. The optimal radius is 1-3 kilometers, and is lower during rush hour. For most considered settings, it is optimal to allocate relatively few rides to the Inform system. Most interestingly, if destination selection becomes more important to the average driver, then the platform should not always allocate more requests to the Inform system. Although this may seem counter-intuitive, allocating too many orders to that system would result in many drivers opting for it, leading to very high waiting times in the Assign system.
KW - Peer-to-peer market
KW - Ride-sourcing platform
KW - Sharing economy
KW - Two-sided market
UR - http://www.scopus.com/inward/record.url?scp=85096231726&partnerID=8YFLogxK
U2 - 10.1016/j.trb.2020.10.001
DO - 10.1016/j.trb.2020.10.001
M3 - Article
AN - SCOPUS:85096231726
SN - 0191-2615
VL - 142
SP - 197
EP - 212
JO - Transportation Research Part B: Methodological
JF - Transportation Research Part B: Methodological
ER -