TY - JOUR
T1 - Task Offloading for Vehicular Edge Computing Based on Improved Hotstuff under Parking Assistance
AU - Liang, Guoling
AU - Li, Chunhai
AU - Zhao, Feng
AU - Zhang, Chuan
AU - Zhu, Liehuang
N1 - Publisher Copyright:
© 1967-2012 IEEE.
PY - 2025
Y1 - 2025
N2 - Parked-assisted vehicular edge computing (PVEC) fully leverages communication and computing resources of parking vehicles, thereby significantly alleviating the pressure on edge servers. However, resource sharing and trading for vehicular task offloading in the PVEC environment usually occur between untrustworthy entities, which compromises the security of data sharing and transactions by vehicles and edge devices. To address these concerns, blockchain is introduced to provide a secure and trustworthy environment for offloading and transactions in PVEC. Nevertheless, due to the mobility of the vehicles, the processes of computing offloading and blockchain transactions are interrupted, which greatly reduces the reliability of the blockchain in edge computing process. In this paper, we propose a blockchain-based PVEC (BPVEC) offloading framework to enhance the security and reliability of the task offloading and transaction. Specifically, a consensus node selection algorithm based on the connected dominating set (CDS) is designed to improve the Hotstuff consensus according to parking duration, computing capability and communication quality, which enhances blockchain reliability in computing offloading and transactions. Meanwhile, a Stackelberg game model, establishing the roadside units (RSUs) and parking vehicles (PVs) as leaders and the requesting vehicles (RVs) as follower, is utilized to optimize the offloading strategy and pricing. Subsequently, a BPVEC offloading strategy algorithm with gradient descent method is designed to maximize system revenue. Simulation results show that the proposed BPVEC offloading scheme is secure and reliable while ensuring maximum benefits.
AB - Parked-assisted vehicular edge computing (PVEC) fully leverages communication and computing resources of parking vehicles, thereby significantly alleviating the pressure on edge servers. However, resource sharing and trading for vehicular task offloading in the PVEC environment usually occur between untrustworthy entities, which compromises the security of data sharing and transactions by vehicles and edge devices. To address these concerns, blockchain is introduced to provide a secure and trustworthy environment for offloading and transactions in PVEC. Nevertheless, due to the mobility of the vehicles, the processes of computing offloading and blockchain transactions are interrupted, which greatly reduces the reliability of the blockchain in edge computing process. In this paper, we propose a blockchain-based PVEC (BPVEC) offloading framework to enhance the security and reliability of the task offloading and transaction. Specifically, a consensus node selection algorithm based on the connected dominating set (CDS) is designed to improve the Hotstuff consensus according to parking duration, computing capability and communication quality, which enhances blockchain reliability in computing offloading and transactions. Meanwhile, a Stackelberg game model, establishing the roadside units (RSUs) and parking vehicles (PVs) as leaders and the requesting vehicles (RVs) as follower, is utilized to optimize the offloading strategy and pricing. Subsequently, a BPVEC offloading strategy algorithm with gradient descent method is designed to maximize system revenue. Simulation results show that the proposed BPVEC offloading scheme is secure and reliable while ensuring maximum benefits.
KW - blockchain
KW - Edge computing
KW - Hotstuff
KW - Stackelberg game
KW - task offloading
UR - http://www.scopus.com/inward/record.url?scp=105002821987&partnerID=8YFLogxK
U2 - 10.1109/TVT.2025.3562227
DO - 10.1109/TVT.2025.3562227
M3 - Article
AN - SCOPUS:105002821987
SN - 0018-9545
JO - IEEE Transactions on Vehicular Technology
JF - IEEE Transactions on Vehicular Technology
ER -