Targeted sentiment classification with knowledge powered attention network

Ximo Bian, Chong Feng*, Arshad Ahmad, Jinming Dai, Guifen Zhao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Targeted sentiment classification aims to identify the sentiment expressed towards some targets given context sentences, having great application value in social media, ecommerce platform and other fields. Most of the previous methods model context and target words with RNN and attention mechanism, which primarily do not use any external knowledge. In this paper, we utilize external knowledge from knowledge bases to reinforce the semantic representation of context and target. We propose a new model called Knowledge Powered Attention Network (KPAN), which uses the multi-head attention mechanism to represent target and context and to fuse with conceptual knowledge extracted from external knowledge bases. The experiments on three public datasets revealed that our proposed model outperforms the state-of-the-art methods, which signify the validity of our model.

Original languageEnglish
Title of host publicationProceedings - IEEE 31st International Conference on Tools with Artificial Intelligence, ICTAI 2019
PublisherIEEE Computer Society
Pages1073-1080
Number of pages8
ISBN (Electronic)9781728137988
DOIs
Publication statusPublished - Nov 2019
Event31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019 - Portland, United States
Duration: 4 Nov 20196 Nov 2019

Publication series

NameProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
Volume2019-November
ISSN (Print)1082-3409

Conference

Conference31st IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2019
Country/TerritoryUnited States
CityPortland
Period4/11/196/11/19

Keywords

  • Attention network
  • External knowledge
  • Targeted sentiment classification

Fingerprint

Dive into the research topics of 'Targeted sentiment classification with knowledge powered attention network'. Together they form a unique fingerprint.

Cite this