TY - JOUR
T1 - Target-Guided Adversarial Point Cloud Transformer Towards Recognition Against Real-world Corruptions
AU - Wang, Jie
AU - Xu, Tingfa
AU - Ding, Lihe
AU - Li, Jianan
N1 - Publisher Copyright:
© 2024 Neural information processing systems foundation. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Achieving robust 3D perception in the face of corrupted data presents an challenging hurdle within 3D vision research. Contemporary transformer-based point cloud recognition models, albeit advanced, tend to overfit to specific patterns, consequently undermining their robustness against corruption. In this work, we introduce the Target-Guided Adversarial Point Cloud Transformer, termed APCT, a novel architecture designed to augment global structure capture through an adversarial feature erasing mechanism predicated on patterns discerned at each step during training. Specifically, APCT integrates an Adversarial Significance Identifier and a Target-guided Promptor. The Adversarial Significance Identifier, is tasked with discerning token significance by integrating global contextual analysis, utilizing a structural salience index algorithm alongside an auxiliary supervisory mechanism. The Target-guided Promptor, is responsible for accentuating the propensity for token discard within the self-attention mechanism, utilizing the value derived above, consequently directing the model attention towards alternative segments in subsequent stages. By iteratively applying this strategy in multiple steps during training, the network progressively identifies and integrates an expanded array of object-associated patterns. Extensive experiments demonstrate that our method achieves state-of-the-art results on multiple corruption benchmarks.
AB - Achieving robust 3D perception in the face of corrupted data presents an challenging hurdle within 3D vision research. Contemporary transformer-based point cloud recognition models, albeit advanced, tend to overfit to specific patterns, consequently undermining their robustness against corruption. In this work, we introduce the Target-Guided Adversarial Point Cloud Transformer, termed APCT, a novel architecture designed to augment global structure capture through an adversarial feature erasing mechanism predicated on patterns discerned at each step during training. Specifically, APCT integrates an Adversarial Significance Identifier and a Target-guided Promptor. The Adversarial Significance Identifier, is tasked with discerning token significance by integrating global contextual analysis, utilizing a structural salience index algorithm alongside an auxiliary supervisory mechanism. The Target-guided Promptor, is responsible for accentuating the propensity for token discard within the self-attention mechanism, utilizing the value derived above, consequently directing the model attention towards alternative segments in subsequent stages. By iteratively applying this strategy in multiple steps during training, the network progressively identifies and integrates an expanded array of object-associated patterns. Extensive experiments demonstrate that our method achieves state-of-the-art results on multiple corruption benchmarks.
UR - http://www.scopus.com/inward/record.url?scp=105000515575&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:105000515575
SN - 1049-5258
VL - 37
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 38th Conference on Neural Information Processing Systems, NeurIPS 2024
Y2 - 9 December 2024 through 15 December 2024
ER -