Abstract
Li3V2(PO4)3/C (LVP/C) cathode materials were successfully prepared by a rheological phase method using alginic acid as the carbon source. The X-ray diffraction (XRD) patterns demonstrate that all the samples contain pure LVP with the same monoclinic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images show that LVP/C materials have a uniform particle size. The LVP/C sample with 10% (w) alginic acid shows the best cycling stability. It delivers a discharge capacity of 117.5 mAh·g-1 (3.0-4.3 V), which can be maintained at 116.5 mAh·g-1 after 50 cycles at a rate of 0.1C. Its capacity retentions of 99.1% (3.0-4.3 V) and 76.8% (3.0-4.8 V) after 50 cycles are prominently higher than those of pristine Li3V2(PO4)3, which are 89.7% (3.0-4.3 V) and 62.39% (3.0-4.8 V). These outstanding electrochemical performances are mainly attributed to the alginic acid-based carbon coating, which can increase the electronic conductivity of materials and buffer the mechanical damage of the active materials during the Li ion insertion/extraction process, thus improving the electrochemical performance of the LVP/C samples.
Original language | English |
---|---|
Pages (from-to) | 2261-2267 |
Number of pages | 7 |
Journal | Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica |
Volume | 33 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2017 |
Keywords
- Alginic acid
- LiV(PO)/C composite
- Lithium ion battery
- Rheological phase method