Abstract
5 mm long aligned titanium oxide/carbon nanotube (TiO2/CNT) coaxial nanowire arrays have been prepared by electrochemically coating the constituent CNTs with a uniform layer of highly crystalline anatase TiO 2 nanoparticles. While the presence of the TiO2 coating was confirmed by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and x-ray diffraction, the resultant TiO2/CNT coaxial arrays were demonstrated to exhibit minimized recombination of photoinduced electron-hole pairs and fast electron transfer from the long TiO2/CNT arrays to external circuits. This, in conjunction with the aligned macrostructure, facilitates the fabrication of TiO2/CNT arrays for various device applications, ranging from photodetectors to photocatalytic systems. Thus, the millimeter long TiO2/CNT arrays represent a significant advance in the development of new macroscopic photoelectronic nanomaterials attractive for a variety of device applications beyond those demonstrated in this study.
Original language | English |
---|---|
Article number | 505702 |
Journal | Nanotechnology |
Volume | 21 |
Issue number | 50 |
DOIs | |
Publication status | Published - 17 Dec 2010 |
Externally published | Yes |