Abstract
The declining performance of aqueous zinc metal batteries (AZMBs) at colder temperatures, especially due to aqueous electrolyte solidification and reduced capacity retention at subzero temperatures, poses a considerable challenge. Here, we report a cheap and ecofriendly aqueous electrolyte formulation comprising low-concentration zinc chloride salt and a common antifreeze agent. We show that the glycerin antifreeze co-solvent effectively interacts with free water molecules and weakens the zinc-ion primary solvation structures, thereby considerably mitigating their detrimental effect at low temperatures. Consequently, the optimized electrolyte successfully outputs a depressed liquid-glass transition point down to −99.2 °C and a record-high Zn plating/stripping Coulombic efficiency of ∼99.94% at −40 °C, as well as ∼70% of its room-temperature capacity at −40 °C, opening up a new opportunity for practical AZMBs.
Original language | English |
---|---|
Pages (from-to) | 2650-2659 |
Number of pages | 10 |
Journal | ACS Energy Letters |
DOIs | |
Publication status | Accepted/In press - 2025 |
Externally published | Yes |