Stoichiometry-engineered phase transition in a two-dimensional binary compound

Mengting Huang, Ze Hua, Roger Guzman, Zhihui Ren, Pingfan Gu, Shiqi Yang, Hui Chen, Decheng Zhang, Yiming Ding, Yu Ye, Caizhen Li, Yuan Huang*, Ruiwen Shao*, Wu Zhou*, Xiaolong Xu*, Yeliang Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Due to complex thermodynamic and kinetic mechanism, phase engineering in nanomaterials is often limited by restricted phases and small-scale synthesis, hindering material diversity and scalability. Here, we demonstrate the exploration to unlock the stoichiometry as a degree of freedom for phase engineering in the Pd-Te binary compound. By reducing diffusion rates, we effectively engineer the stoichiometry of the reactants. We visualize the kinetic process, showing the stoichiometry transition from Pd10Te3 to PdTe2 through a sequential multi-step nucleation process. In total, five distinct phases are identified, demonstrating the potential to enhance phase diversity by fine-tuning stoichiometry. By controlling spatially uniform nucleation and halting the phase transition at precise points, we achieve stoichiometry-controllable wafer-scale growth. Notably, four of these phases exhibit superconducting properties. Our findings offer insights into the mechanism of phase transition through stoichiometry engineering, enabling the expansion of the phase library in nanomaterials and advancing scalable applications.

Original languageEnglish
Article number4162
JournalNature Communications
Volume16
Issue number1
DOIs
Publication statusPublished - Dec 2025

Fingerprint

Dive into the research topics of 'Stoichiometry-engineered phase transition in a two-dimensional binary compound'. Together they form a unique fingerprint.

Cite this