Abstract
The main result of this note is the existence of martingale solutions to the stochastic heat equation (SHE) in a Riemannian manifold by using suitable Dirichlet forms on the corresponding path/loop space. Moreover, we present some characterizations of the lower bound of the Ricci curvature by functional inequalities of various associated Dirichlet forms.
| Original language | English |
|---|---|
| Pages (from-to) | 205-213 |
| Number of pages | 9 |
| Journal | Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni |
| Volume | 29 |
| Issue number | 1 |
| DOIs | |
| Publication status | Published - 2018 |
Keywords
- Functional inequality
- Quasi-regular Dirichlet form
- Ricci curvature
- Stochastic heat equation