TY - GEN
T1 - SRN
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
AU - Ke, Wei
AU - Chen, Jie
AU - Jiao, Jianbin
AU - Zhao, Guoying
AU - Ye, Qixiang
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - In this paper, we establish a baseline for object symmetry detection in complex backgrounds by presenting a new benchmark and an end-to-end deep learning approach, opening up a promising direction for symmetry detection in the wild. The new benchmark, named Sym-PASCAL, spans challenges including object diversity, multi-objects, part-invisibility, and various complex backgrounds that are far beyond those in existing datasets. The proposed symmetry detection approach, named Side-output Residual Network (SRN), leverages output Residual Units (RUs) to fit the errors between the object symmetry groundtruth and the outputs of RUs. By stacking RUs in a deep-to-shallow manner, SRN exploits the 'flow' of errors among multiple scales to ease the problems of fitting complex outputs with limited layers, suppressing the complex backgrounds, and effectively matching object symmetry of different scales. Experimental results validate both the benchmark and its challenging aspects related to realworld images, and the state-of-the-art performance of our symmetry detection approach. The benchmark and the code for SRN are publicly available at https://github.com/KevinKecc/SRN.
AB - In this paper, we establish a baseline for object symmetry detection in complex backgrounds by presenting a new benchmark and an end-to-end deep learning approach, opening up a promising direction for symmetry detection in the wild. The new benchmark, named Sym-PASCAL, spans challenges including object diversity, multi-objects, part-invisibility, and various complex backgrounds that are far beyond those in existing datasets. The proposed symmetry detection approach, named Side-output Residual Network (SRN), leverages output Residual Units (RUs) to fit the errors between the object symmetry groundtruth and the outputs of RUs. By stacking RUs in a deep-to-shallow manner, SRN exploits the 'flow' of errors among multiple scales to ease the problems of fitting complex outputs with limited layers, suppressing the complex backgrounds, and effectively matching object symmetry of different scales. Experimental results validate both the benchmark and its challenging aspects related to realworld images, and the state-of-the-art performance of our symmetry detection approach. The benchmark and the code for SRN are publicly available at https://github.com/KevinKecc/SRN.
UR - https://www.scopus.com/pages/publications/85039790959
U2 - 10.1109/CVPR.2017.40
DO - 10.1109/CVPR.2017.40
M3 - Conference contribution
AN - SCOPUS:85039790959
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 302
EP - 310
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 21 July 2017 through 26 July 2017
ER -