SRN: Side-output residual network for object symmetry detection in the wild

Wei Ke, Jie Chen, Jianbin Jiao, Guoying Zhao, Qixiang Ye*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

99 Citations (Scopus)

Abstract

In this paper, we establish a baseline for object symmetry detection in complex backgrounds by presenting a new benchmark and an end-to-end deep learning approach, opening up a promising direction for symmetry detection in the wild. The new benchmark, named Sym-PASCAL, spans challenges including object diversity, multi-objects, part-invisibility, and various complex backgrounds that are far beyond those in existing datasets. The proposed symmetry detection approach, named Side-output Residual Network (SRN), leverages output Residual Units (RUs) to fit the errors between the object symmetry groundtruth and the outputs of RUs. By stacking RUs in a deep-to-shallow manner, SRN exploits the 'flow' of errors among multiple scales to ease the problems of fitting complex outputs with limited layers, suppressing the complex backgrounds, and effectively matching object symmetry of different scales. Experimental results validate both the benchmark and its challenging aspects related to realworld images, and the state-of-the-art performance of our symmetry detection approach. The benchmark and the code for SRN are publicly available at https://github.com/KevinKecc/SRN.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages302-310
Number of pages9
ISBN (Electronic)9781538604571
DOIs
Publication statusPublished - 6 Nov 2017
Externally publishedYes
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint

Dive into the research topics of 'SRN: Side-output residual network for object symmetry detection in the wild'. Together they form a unique fingerprint.

Cite this