SpikMamba: When SNN meets Mamba in Event-based Human Action Recognition

Jiaqi Chen, Yan Yang, Shizhuo Deng, Da Teng, Liyuan Pan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Human action recognition (HAR) plays a key role in various applications such as video analysis, surveillance, autonomous driving, robotics, and healthcare. Most HAR algorithms are developed from RGB images, which capture detailed visual information. However, these algorithms raise concerns in privacy-sensitive environments due to the recording of identifiable features. Event cameras offer a promising solution by capturing scene brightness changes sparsely at the pixel level, without capturing full images. Moreover, event cameras have high dynamic ranges that can effectively handle scenarios with complex lighting conditions, such as low light or high contrast environments. However, using event cameras introduces challenges in modeling the spatially sparse and high temporal resolution event data for HAR. To address these issues, we propose the SpikMamba framework, which combines the energy efficiency of spiking neural networks and the long sequence modeling capability of Mamba to efficiently capture global features from spatially sparse and high a temporal resolution event data. Additionally, to improve the locality of modeling, a spiking window-based linear attention mechanism is used. Extensive experiments show that SpikMamba achieves remarkable recognition performance, surpassing the previous state-of-the-art by 1.45%, 7.22%, 0.15%, and 3.92% on the PAF, HARDVS, DVS128, and E-FAction datasets, respectively. The code is available at https://github.com/Typistchen/SpikMamba.

Original languageEnglish
Title of host publicationProceedings of the 6th ACM International Conference on Multimedia in Asia, MMAsia 2024
PublisherAssociation for Computing Machinery, Inc
ISBN (Electronic)9798400712739
DOIs
Publication statusPublished - 28 Dec 2024
Event6th ACM International Conference on Multimedia in Asia, MMAsia 2024 - Auckland, New Zealand
Duration: 3 Dec 20246 Dec 2024

Publication series

NameProceedings of the 6th ACM International Conference on Multimedia in Asia, MMAsia 2024

Conference

Conference6th ACM International Conference on Multimedia in Asia, MMAsia 2024
Country/TerritoryNew Zealand
CityAuckland
Period3/12/246/12/24

Keywords

  • Event-based HAR
  • Mamba
  • Spiking Neural Networks

Fingerprint

Dive into the research topics of 'SpikMamba: When SNN meets Mamba in Event-based Human Action Recognition'. Together they form a unique fingerprint.

Cite this