TY - GEN
T1 - Span-based Unified Named Entity Recognition Framework via Contrastive Learning
AU - Mao, Hongli
AU - Mao, Xian Ling
AU - Tang, Hanlin
AU - Shang, Yu Ming
AU - Gao, Xiaoyan
AU - Ma, Ao Jie
AU - Huang, Heyan
N1 - Publisher Copyright:
© 2024 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Traditional Named Entity Recognition (NER) models are typically designed for domain-specific datasets and limited to fixed predefined types, resulting in difficulty generalizing to new domains. Recently, prompt-based generative methods attempt to mitigate this constraint by training models jointly on diverse datasets and extract specified entities via prompt instructions. However, due to autoregressive structure, these methods cannot directly model entity span and suffer from slow sequential decoding. To address these issues, we propose a novel Span-based Unified NER framework via contrastive learning (SUNER), which aligns text span and entity type representations in a shared semantic space to extract entities in parallel. Specifically, we first extract mention spans without considering entity types to better generalize across datasets. Then, by leveraging the power of contrastive learning and well-designed entity marker structure, we map candidate spans and their textual type descriptions into the same vector representation space to differentiate entities across domains. Extensive experiments on both supervised and zero/few-shot settings demonstrate that proposed SUNER model achieves better performance and higher efficiency than previous state-of-the-art unified NER models.
AB - Traditional Named Entity Recognition (NER) models are typically designed for domain-specific datasets and limited to fixed predefined types, resulting in difficulty generalizing to new domains. Recently, prompt-based generative methods attempt to mitigate this constraint by training models jointly on diverse datasets and extract specified entities via prompt instructions. However, due to autoregressive structure, these methods cannot directly model entity span and suffer from slow sequential decoding. To address these issues, we propose a novel Span-based Unified NER framework via contrastive learning (SUNER), which aligns text span and entity type representations in a shared semantic space to extract entities in parallel. Specifically, we first extract mention spans without considering entity types to better generalize across datasets. Then, by leveraging the power of contrastive learning and well-designed entity marker structure, we map candidate spans and their textual type descriptions into the same vector representation space to differentiate entities across domains. Extensive experiments on both supervised and zero/few-shot settings demonstrate that proposed SUNER model achieves better performance and higher efficiency than previous state-of-the-art unified NER models.
UR - http://www.scopus.com/inward/record.url?scp=85204313991&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85204313991
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 6406
EP - 6414
BT - Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
A2 - Larson, Kate
PB - International Joint Conferences on Artificial Intelligence
T2 - 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Y2 - 3 August 2024 through 9 August 2024
ER -