Abstract
The production of efficient and low-cost electrocatalysts for the oxygen reduction reaction (ORR) is one of the key issues for the extensive commercialization of fuel cells. In this paper, we describe a facile one-pot hydrothermal synthesis route to in situ grow spinel NiFe2O4 nanoparticles onto the graphene nanosheets which were produced in advance by a scalable solvothermal reduction of chloromethane and metallic potassium. The resultant NiFe2O4/graphene nanohybrid exhibits superior electrocatalytic activity for the ORR to pure graphene nanosheets and unsupported NiFe2O4 nanoparticles, which mainly favours a desirable direct 4e- reaction pathway during the ORR process. Meanwhile, the NiFe2O4/graphene nanohybrid exhibits the outstanding long-term stability for the ORR, outperforming the commercial 20 wt% Pt/C based on the current-time chronoamperometric test. The excellent catalytic activity and stability of NiFe2O4/graphene nanohybrid are ascribed to the strong coupling and synergistic effect between NiFe2O4 nanoparticles and graphene nanosheets.
| Original language | English |
|---|---|
| Pages (from-to) | 44476-44482 |
| Number of pages | 7 |
| Journal | RSC Advances |
| Volume | 5 |
| Issue number | 55 |
| DOIs | |
| Publication status | Published - 2015 |
| Externally published | Yes |