Abstract
Epithelial cell tissues have a slow relaxation dynamics resembling that of supercooled liquids. Yet, they also have distinguishing features. These include an extended short-time subdiffusive transient, as observed in some experiments and recent studies of model systems, and a sub-Arrhenius dependence of the relaxation time on temperature, as reported in numerical studies. Here we demonstrate that the anomalous glassy dynamics of epithelial tissues originates from the emergence of a fractal-like energy landscape, particles becoming virtually free to diffuse in specific phase space directions up to a small distance. Furthermore, we clarify that the stiffness of the cells tunes this anomalous behavior, tissues of stiff cells having conventional glassy relaxation dynamics.
Original language | English |
---|---|
Article number | 022607 |
Journal | Physical Review E |
Volume | 103 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2021 |