TY - GEN
T1 - Soft measure of visual token occurrences for object categorization
AU - Wang, Yanjie
AU - Liu, Xiabi
AU - Jia, Yunde
PY - 2009
Y1 - 2009
N2 - The improvement of bag-of-features image representation by statistical modeling of visual tokens has recently gained attention in the field of object categorization. This paper proposes a soft bag-of-features image representation based on Gaussian Mixture Modeling (GMM) of visual tokens for object categorization. The distribution of local features from each visual token is assumed as the GMM and learned from the training data by the Expectation-Maximization algorithm with a model selection method based on the Minimum Description Length. Consequently, we can employ Bayesian formula to compute posterior probabilities of being visual tokens for local features. According to these probabilities, three schemes of image representation are defined and compared for object categorization under a new discriminative learning framework of Bayesian classifiers, the Max-Min posterior Pseudo-probabilities (MMP). We evaluate the effectiveness of the proposed object categorization approach on the Caltech-4 database and car side images from the University of Illinois. The experimental results with comparisons to those reported in other related work show that our approach is promising.
AB - The improvement of bag-of-features image representation by statistical modeling of visual tokens has recently gained attention in the field of object categorization. This paper proposes a soft bag-of-features image representation based on Gaussian Mixture Modeling (GMM) of visual tokens for object categorization. The distribution of local features from each visual token is assumed as the GMM and learned from the training data by the Expectation-Maximization algorithm with a model selection method based on the Minimum Description Length. Consequently, we can employ Bayesian formula to compute posterior probabilities of being visual tokens for local features. According to these probabilities, three schemes of image representation are defined and compared for object categorization under a new discriminative learning framework of Bayesian classifiers, the Max-Min posterior Pseudo-probabilities (MMP). We evaluate the effectiveness of the proposed object categorization approach on the Caltech-4 database and car side images from the University of Illinois. The experimental results with comparisons to those reported in other related work show that our approach is promising.
UR - http://www.scopus.com/inward/record.url?scp=70349329660&partnerID=8YFLogxK
U2 - 10.1007/978-3-642-03767-2_94
DO - 10.1007/978-3-642-03767-2_94
M3 - Conference contribution
AN - SCOPUS:70349329660
SN - 3642037666
SN - 9783642037665
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 774
EP - 782
BT - Computer Analysis of Images and Patterns - 13th International Conference, CAIP 2009, Proceedings
T2 - 13th International Conference on Computer Analysis of Images and Patterns, CAIP 2009
Y2 - 2 September 2009 through 4 September 2009
ER -