TY - JOUR
T1 - Shape memory polymer lattice structures with programmable thermal recovery time
AU - Ji, Jinyu
AU - Zhang, Kai
AU - Guo, Xiaogang
N1 - Publisher Copyright:
© 2024 IOP Publishing Ltd.
PY - 2024/8
Y1 - 2024/8
N2 - Shape memory polymer (SMP) lattice structures have garnered considerable attention due to their intrinsic capability for self-recovery and mechanical reconfiguration. The temporal path, encompassing aspects such as recovery time and deployment sequence, of the shape recovery process in SMP lattice structures holds paramount significance across various domains, including but not limited to medical devices and space deployable structures. Nonetheless, the programming of shape recovery time or deployment sequences in SMP lattice structures, particularly in scenarios devoid of external controllers, remains a challenge. In addressing these challenges, this study presents a novel class of SMP structures endowed with customizable thermal recovery times and programmable deployment sequences, leveraging the influence of structural geometry. Notably, the programmable recovery time and serialized deployment behavior of the proposed SMP lattice structure are achieved within a constant temperature environment, obviating the need for external time-varying stimuli. Finite element simulations and experimental validations corroborate that the proposed SMP structures can be programmed to exhibit recovery times spanning from mere seconds to several hundred seconds. Moreover, a three-stage sequential recovery behavior is attained without necessitating prior local configuration programming. Furthermore, exploiting the distinctive sequential reversibility inherent in a constant high-temperature environment, the designed lattice structure showcases the ability to transition to multiple distinct stable configurations by modulating the duration of high-temperature exposure. The proposed recovery time programmable SMP lattice structure thus presents a viable avenue for realizing intricate multistage controllable shape-shifting structures devoid of external control equipment.
AB - Shape memory polymer (SMP) lattice structures have garnered considerable attention due to their intrinsic capability for self-recovery and mechanical reconfiguration. The temporal path, encompassing aspects such as recovery time and deployment sequence, of the shape recovery process in SMP lattice structures holds paramount significance across various domains, including but not limited to medical devices and space deployable structures. Nonetheless, the programming of shape recovery time or deployment sequences in SMP lattice structures, particularly in scenarios devoid of external controllers, remains a challenge. In addressing these challenges, this study presents a novel class of SMP structures endowed with customizable thermal recovery times and programmable deployment sequences, leveraging the influence of structural geometry. Notably, the programmable recovery time and serialized deployment behavior of the proposed SMP lattice structure are achieved within a constant temperature environment, obviating the need for external time-varying stimuli. Finite element simulations and experimental validations corroborate that the proposed SMP structures can be programmed to exhibit recovery times spanning from mere seconds to several hundred seconds. Moreover, a three-stage sequential recovery behavior is attained without necessitating prior local configuration programming. Furthermore, exploiting the distinctive sequential reversibility inherent in a constant high-temperature environment, the designed lattice structure showcases the ability to transition to multiple distinct stable configurations by modulating the duration of high-temperature exposure. The proposed recovery time programmable SMP lattice structure thus presents a viable avenue for realizing intricate multistage controllable shape-shifting structures devoid of external control equipment.
KW - lattice structure
KW - programmable
KW - shape memory polymer
UR - http://www.scopus.com/inward/record.url?scp=85199469501&partnerID=8YFLogxK
U2 - 10.1088/1361-665X/ad6227
DO - 10.1088/1361-665X/ad6227
M3 - Article
AN - SCOPUS:85199469501
SN - 0964-1726
VL - 33
JO - Smart Materials and Structures
JF - Smart Materials and Structures
IS - 8
M1 - 085027
ER -