TY - GEN
T1 - SGOR
T2 - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
AU - Zhao, Guiyu
AU - Guo, Zhentao
AU - Ma, Hongbin
N1 - Publisher Copyright:
© 2024 IEEE.
PY - 2024
Y1 - 2024
N2 - In this paper, we introduce a new outlier removal method that fully leverages geometric and semantic information, to achieve robust registration. Current semantic-based registration methods only use semantics for point-to-point or instance semantic correspondence generation, which has two problems. First, these methods are highly dependent on the correctness of semantics. They perform poorly in scenarios with incorrect semantics and sparse semantics. Second, the use of semantics is limited only to the correspondence generation, resulting in bad performance in the weak geometry scene. To solve these problems, on the one hand, we propose secondary ground segmentation and loose semantic consistency based on regional voting. It improves the robustness to semantic correctness by reducing the dependence on single-point semantics. On the other hand, we propose semantic-geometric consistency for outlier removal, which makes full use of semantic information and significantly improves the quality of correspondences. In addition, a two-stage hypothesis verification is proposed, which solves the problem of incorrect transformation selection in the weak geometry scene. In the outdoor dataset, our method demonstrates superior performance, boosting a 22.5 percentage points improvement in registration recall and achieving better robustness under various conditions. Our code is available.
AB - In this paper, we introduce a new outlier removal method that fully leverages geometric and semantic information, to achieve robust registration. Current semantic-based registration methods only use semantics for point-to-point or instance semantic correspondence generation, which has two problems. First, these methods are highly dependent on the correctness of semantics. They perform poorly in scenarios with incorrect semantics and sparse semantics. Second, the use of semantics is limited only to the correspondence generation, resulting in bad performance in the weak geometry scene. To solve these problems, on the one hand, we propose secondary ground segmentation and loose semantic consistency based on regional voting. It improves the robustness to semantic correctness by reducing the dependence on single-point semantics. On the other hand, we propose semantic-geometric consistency for outlier removal, which makes full use of semantic information and significantly improves the quality of correspondences. In addition, a two-stage hypothesis verification is proposed, which solves the problem of incorrect transformation selection in the weak geometry scene. In the outdoor dataset, our method demonstrates superior performance, boosting a 22.5 percentage points improvement in registration recall and achieving better robustness under various conditions. Our code is available.
UR - http://www.scopus.com/inward/record.url?scp=85216445830&partnerID=8YFLogxK
U2 - 10.1109/IROS58592.2024.10801642
DO - 10.1109/IROS58592.2024.10801642
M3 - Conference contribution
AN - SCOPUS:85216445830
T3 - IEEE International Conference on Intelligent Robots and Systems
SP - 9388
EP - 9395
BT - 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 14 October 2024 through 18 October 2024
ER -