TY - JOUR
T1 - Semi-liquid metal-based highly permeable and adhesive electronic skin inspired by spider web
AU - Guo, Rui
AU - Li, Xiaoqing
AU - Zhou, Yingtong
AU - Zhang, Yuqi
AU - Jiang, Chengjie
AU - Yu, Yang
AU - Tan, Qingting
AU - Ding, Wenbo
AU - Wang, Hongzhang
N1 - Publisher Copyright:
© 2024 Science China Press
PY - 2024/9/15
Y1 - 2024/9/15
N2 - Soft and stretchable electronics have garnered significant attention in various fields, such as wearable electronics, electronic skins, and soft robotics. However, current wearable electronics made from materials like conductive elastomers, hydrogels, and liquid metals face limitations, including low permeability, poor adhesion, inadequate conductivity, and limited stretchability. These issues hinder their effectiveness in long-term healthcare monitoring and exercise monitoring. To address these challenges, we introduce a novel design of web-droplet-like electronics featuring a semi-liquid metal coating for wearable applications. This innovative design offers high permeability, excellent stretchability, strong adhesion, and good conductivity for the electronic skin. The unique structure, inspired by the architecture of a spider web, significantly enhances air permeability compared to commercial breathable patches. Furthermore, the distribution of polyborosiloxane mimics the adhesive properties of spider web mucus, while the use of semi-liquid metals in this design results in remarkable conductivity (9 × 106 S/m) and tensile performance (up to 850% strain). This advanced electronic skin technology enables long-term monitoring of various physiological parameters and supports machine learning recognition functions with unparalleled advantages. This web-droplet structure design strategy holds great promise for commercial applications in medical health monitoring and disease diagnosis.
AB - Soft and stretchable electronics have garnered significant attention in various fields, such as wearable electronics, electronic skins, and soft robotics. However, current wearable electronics made from materials like conductive elastomers, hydrogels, and liquid metals face limitations, including low permeability, poor adhesion, inadequate conductivity, and limited stretchability. These issues hinder their effectiveness in long-term healthcare monitoring and exercise monitoring. To address these challenges, we introduce a novel design of web-droplet-like electronics featuring a semi-liquid metal coating for wearable applications. This innovative design offers high permeability, excellent stretchability, strong adhesion, and good conductivity for the electronic skin. The unique structure, inspired by the architecture of a spider web, significantly enhances air permeability compared to commercial breathable patches. Furthermore, the distribution of polyborosiloxane mimics the adhesive properties of spider web mucus, while the use of semi-liquid metals in this design results in remarkable conductivity (9 × 106 S/m) and tensile performance (up to 850% strain). This advanced electronic skin technology enables long-term monitoring of various physiological parameters and supports machine learning recognition functions with unparalleled advantages. This web-droplet structure design strategy holds great promise for commercial applications in medical health monitoring and disease diagnosis.
KW - High permeability
KW - Long-term monitoring
KW - Semi-liquid metal
KW - Strong adhesion
KW - Wearable electronics
KW - Web-droplet structure
UR - http://www.scopus.com/inward/record.url?scp=85198350724&partnerID=8YFLogxK
U2 - 10.1016/j.scib.2024.06.032
DO - 10.1016/j.scib.2024.06.032
M3 - Article
AN - SCOPUS:85198350724
SN - 2095-9273
VL - 69
SP - 2723
EP - 2734
JO - Science Bulletin
JF - Science Bulletin
IS - 17
ER -