TY - GEN
T1 - Semantic Hilbert space for text representation learning
AU - Wang, Benyou
AU - Li, Qiuchi
AU - Melucci, Massimo
AU - Song, Dawei
N1 - Publisher Copyright:
© 2019 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC-BY 4.0 License.
PY - 2019/5/13
Y1 - 2019/5/13
N2 - Capturing the meaning of sentences has long been a challenging task. Current models tend to apply linear combinations of word features to conduct semantic composition for bigger-granularity units e.g. phrases, sentences, and documents. However, the semantic linearity does not always hold in human language. For instance, the meaning of the phrase “ivory tower” cannot be deduced by linearly combining the meanings of “ivory” and “tower”. To address this issue, we propose a new framework that models different levels of semantic units (e.g. sememe, word, sentence, and semantic abstraction) on a single Semantic Hilbert Space, which naturally admits a non-linear semantic composition by means of a complex-valued vector word representation. An end-to-end neural network 1 is proposed to implement the framework in the text classification task, and evaluation results on six benchmarking text classification datasets demonstrate the effectiveness, robustness and self-explanation power of the proposed model. Furthermore, intuitive case studies are conducted to help end users to understand how the framework works.
AB - Capturing the meaning of sentences has long been a challenging task. Current models tend to apply linear combinations of word features to conduct semantic composition for bigger-granularity units e.g. phrases, sentences, and documents. However, the semantic linearity does not always hold in human language. For instance, the meaning of the phrase “ivory tower” cannot be deduced by linearly combining the meanings of “ivory” and “tower”. To address this issue, we propose a new framework that models different levels of semantic units (e.g. sememe, word, sentence, and semantic abstraction) on a single Semantic Hilbert Space, which naturally admits a non-linear semantic composition by means of a complex-valued vector word representation. An end-to-end neural network 1 is proposed to implement the framework in the text classification task, and evaluation results on six benchmarking text classification datasets demonstrate the effectiveness, robustness and self-explanation power of the proposed model. Furthermore, intuitive case studies are conducted to help end users to understand how the framework works.
KW - Neural network
KW - Quantum theory
KW - Text understanding
UR - http://www.scopus.com/inward/record.url?scp=85066914836&partnerID=8YFLogxK
U2 - 10.1145/3308558.3313516
DO - 10.1145/3308558.3313516
M3 - Conference contribution
AN - SCOPUS:85066914836
T3 - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
SP - 3293
EP - 3299
BT - The Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PB - Association for Computing Machinery, Inc
T2 - 2019 World Wide Web Conference, WWW 2019
Y2 - 13 May 2019 through 17 May 2019
ER -