Semantic Hilbert space for text representation learning

Benyou Wang, Qiuchi Li, Massimo Melucci*, Dawei Song

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

35 Citations (Scopus)

Abstract

Capturing the meaning of sentences has long been a challenging task. Current models tend to apply linear combinations of word features to conduct semantic composition for bigger-granularity units e.g. phrases, sentences, and documents. However, the semantic linearity does not always hold in human language. For instance, the meaning of the phrase “ivory tower” cannot be deduced by linearly combining the meanings of “ivory” and “tower”. To address this issue, we propose a new framework that models different levels of semantic units (e.g. sememe, word, sentence, and semantic abstraction) on a single Semantic Hilbert Space, which naturally admits a non-linear semantic composition by means of a complex-valued vector word representation. An end-to-end neural network 1 is proposed to implement the framework in the text classification task, and evaluation results on six benchmarking text classification datasets demonstrate the effectiveness, robustness and self-explanation power of the proposed model. Furthermore, intuitive case studies are conducted to help end users to understand how the framework works.

Original languageEnglish
Title of host publicationThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019
PublisherAssociation for Computing Machinery, Inc
Pages3293-3299
Number of pages7
ISBN (Electronic)9781450366748
DOIs
Publication statusPublished - 13 May 2019
Event2019 World Wide Web Conference, WWW 2019 - San Francisco, United States
Duration: 13 May 201917 May 2019

Publication series

NameThe Web Conference 2019 - Proceedings of the World Wide Web Conference, WWW 2019

Conference

Conference2019 World Wide Web Conference, WWW 2019
Country/TerritoryUnited States
CitySan Francisco
Period13/05/1917/05/19

Keywords

  • Neural network
  • Quantum theory
  • Text understanding

Fingerprint

Dive into the research topics of 'Semantic Hilbert space for text representation learning'. Together they form a unique fingerprint.

Cite this