Scene-Aware Context Reasoning for Unsupervised Abnormal Event Detection in Videos

Che Sun, Yunde Jia, Yao Hu, Yuwei Wu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

94 Citations (Scopus)

Abstract

In this paper, we propose a scene-aware context reasoning method that exploits context information from visual features for unsupervised abnormal event detection in videos, which bridges the semantic gap between visual context and the meaning of abnormal events. In particular, we build na spatio-temporal context graph to model visual context information including appearances of objects, spatio-temporal relationships among objects and scene types. The context information is encoded into the nodes and edges of the graph, and their states are iteratively updated by using multiple RNNs with message passing for context reasoning. To infer the spatio-temporal context graph in various scenes, we develop a graph-based deep Gaussian mixture model for scene clustering in an unsupervised manner. We then compute frame-level anomaly scores based on the context information to discriminate abnormal events in various scenes. Evaluations on three challenging datasets, including the UCF-Crime, Avenue, and ShanghaiTech datasets, demonstrate the effectiveness of our method.

Original languageEnglish
Title of host publicationMM 2020 - Proceedings of the 28th ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages184-192
Number of pages9
ISBN (Electronic)9781450379885
DOIs
Publication statusPublished - 12 Oct 2020
Event28th ACM International Conference on Multimedia, MM 2020 - Virtual, Online, United States
Duration: 12 Oct 202016 Oct 2020

Publication series

NameMM 2020 - Proceedings of the 28th ACM International Conference on Multimedia

Conference

Conference28th ACM International Conference on Multimedia, MM 2020
Country/TerritoryUnited States
CityVirtual, Online
Period12/10/2016/10/20

Keywords

  • abnormal event detection
  • context reasoning
  • spatio-temporal context graph
  • visual context

Fingerprint

Dive into the research topics of 'Scene-Aware Context Reasoning for Unsupervised Abnormal Event Detection in Videos'. Together they form a unique fingerprint.

Cite this