Abstract
A new birefringent crystal of Sb4O3(TeO3)2(HSO4)(OH) was achieved by incorporating two stereochemically active lone pair (SCALP) cations of Sb(III) and Te(IV) into sulfates simultaneously. The Sb3+ and Te4+ ions display highly distorted coordination environments due to the SCALP effect. Sb4O3(TeO3)2(HSO4)(OH) displays a 3D structure composed of [Sb4O3(TeO3)2(OH)]∞+ layers bridged by [SO3(OH)]− tetrahedra. It possesses a large birefringence and a wide optical transparent range, making it a new UV birefringent crystal. First-principles calculation analysis suggests that the synergistic effect of the cooperation of SCALP effect of Sb3+ and Te4+ cations make a dominant contribution to the birefringence. The work highlights that units with SCALP cations have advantages in generating large optical anisotropy and are preferable structural units for designing novel birefringent materials.
| Original language | English |
|---|---|
| Pages (from-to) | 7123-7129 |
| Number of pages | 7 |
| Journal | Inorganic Chemistry |
| Volume | 62 |
| Issue number | 18 |
| DOIs | |
| Publication status | Published - 8 May 2023 |