SBC-AL: Structure and Boundary Consistency-Based Active Learning for Medical Image Segmentation

Taimin Zhou, Jin Yang, Lingguo Cui, Nan Zhang, Senchun Chai*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Deep learning-based (DL) models have shown superior representation capabilities in medical image segmentation tasks. However, these representation powers require DL models to be trained by extensive annotated data, but the high annotation costs hinder this, thus limiting their performance. Active learning (AL) is a feasible solution for efficiently training models to demonstrate representation powers under low annotation budgets. It is achieved by querying unlabeled data for new annotations to continuously train models. Thus, the performance of AL methods largely depends on the query strategy. However, designing an efficient query strategy remains challenging due to limited information from unlabeled data for querying. Another challenge is that few methods exploit information in segmentation results for querying. To address them, first, we propose a Structure-aware Feature Prediction (SFP) and Attentional Segmentation Refinement (ASR) module to enable models to generate segmentation results with sufficient information for querying. The incorporation of these modules enhances the models to capture information related to the anatomical structures and boundaries. Additionally, we propose an uncertainty-based querying strategy to leverage information in segmentation results. Specifically, uncertainty is evaluated by assessing the consistency of anatomical structure and boundary information within segmentation results by calculating Structure Consistency Score (SCS) and Boundary Consistency Score (BCS). Subsequently, data is queried for annotations based on uncertainty. The incorporation of SFP and ASR-enhanced segmentation models and this uncertainty-based querying strategy into a standard AL strategy leads to a novel method, termed Structure and Boundary Consistency-based Active Learning (SBC-AL). Experimental evaluations conducted on the ACDC dataset and KiTS19 dataset demonstrate the superior performance of SBC-AL on efficient model training under low annotation budgets over other AL methods. Our code is available at https://github.com/Tmin16/SBC-AL.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel
PublisherSpringer Science and Business Media Deutschland GmbH
Pages283-293
Number of pages11
ISBN (Print)9783031723896
DOIs
Publication statusPublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15012 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Active Learning
  • Consistency Scores
  • Medical Image Segmentation
  • Query Metrics
  • Uncertainty

Fingerprint

Dive into the research topics of 'SBC-AL: Structure and Boundary Consistency-Based Active Learning for Medical Image Segmentation'. Together they form a unique fingerprint.

Cite this