TY - GEN
T1 - RotDiff
T2 - 32nd ACM International Conference on Information and Knowledge Management, CIKM 2023
AU - Qiao, Hongliang
AU - Feng, Shanshan
AU - Li, Xutao
AU - Lin, Huiwei
AU - Hu, Han
AU - Wei, Wei
AU - Ye, Yunming
N1 - Publisher Copyright:
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 979-8-4007-0124-5/23/10...$15.00.
PY - 2023/10/21
Y1 - 2023/10/21
N2 - The massive amounts of online user behavior data on social networks allow for the investigation of information diffusion prediction, which is essential to comprehend how information propagates among users. The main difficulty in diffusion prediction problem is to effectively model the complex social factors in social networks and diffusion cascades. However, existing methods are mainly based on Euclidean space, which cannot well preserve the underlying hierarchical structures that could better reflect the strength of user influence. Meanwhile, existing methods cannot accurately model the obvious asymmetric features of the diffusion process. To alleviate these limitations, we utilize rotation transformation in the hyperbolic to model complex diffusion patterns. The modulus of representations in the hyperbolic space could effectively describe the strength of the user's influence. Rotation transformations could represent a variety of complex asymmetric features. Further, rotation transformation could model various social factors without changing the strength of influence. In this paper, we propose a novel hyperbolic rotation representation model RotDiff for the diffusion prediction problem. Specifically, we first map each social user to a Lorentzian vector and use two groups of transformations to encode global social factors in the social graph and the diffusion graph. Then, we combine attention mechanism in the hyperbolic space with extra rotation transformations to capture local diffusion dependencies within a given cascade. Experimental results on five real-world datasets demonstrate that the proposed model RotDiff outperforms various state-of-the-art diffusion prediction models.
AB - The massive amounts of online user behavior data on social networks allow for the investigation of information diffusion prediction, which is essential to comprehend how information propagates among users. The main difficulty in diffusion prediction problem is to effectively model the complex social factors in social networks and diffusion cascades. However, existing methods are mainly based on Euclidean space, which cannot well preserve the underlying hierarchical structures that could better reflect the strength of user influence. Meanwhile, existing methods cannot accurately model the obvious asymmetric features of the diffusion process. To alleviate these limitations, we utilize rotation transformation in the hyperbolic to model complex diffusion patterns. The modulus of representations in the hyperbolic space could effectively describe the strength of the user's influence. Rotation transformations could represent a variety of complex asymmetric features. Further, rotation transformation could model various social factors without changing the strength of influence. In this paper, we propose a novel hyperbolic rotation representation model RotDiff for the diffusion prediction problem. Specifically, we first map each social user to a Lorentzian vector and use two groups of transformations to encode global social factors in the social graph and the diffusion graph. Then, we combine attention mechanism in the hyperbolic space with extra rotation transformations to capture local diffusion dependencies within a given cascade. Experimental results on five real-world datasets demonstrate that the proposed model RotDiff outperforms various state-of-the-art diffusion prediction models.
KW - Diffusion Prediction
KW - Hyperbolic Representation
KW - Rotation Transformation
KW - Social Networks
UR - http://www.scopus.com/inward/record.url?scp=85178099139&partnerID=8YFLogxK
U2 - 10.1145/3583780.3615041
DO - 10.1145/3583780.3615041
M3 - Conference contribution
AN - SCOPUS:85178099139
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 2065
EP - 2074
BT - CIKM 2023 - Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
PB - Association for Computing Machinery
Y2 - 21 October 2023 through 25 October 2023
ER -