Rotation Invariant Local Binary Convolution Neural Networks

Xin Zhang, Li Liu, Yuxiang Xie*, Jie Chen, Lingda Wu, Matti Pietikäinen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

24 Citations (Scopus)

Abstract

Although Convolution Neural Networks(CNNs) are unprecedentedly powerful to learn effective representations, they are still parameter expensive and limited by the lack of ability to handle with the orientation transformation of the input data. To alleviate this problem, we propose a deep architecture named Rotation Invariant Local Binary Convolution Neural Network(RI-LBCNN). RI-LBCNN is a deep convolution neural network consisting of Local Binary orientation Module(LBoM). A LBoM is composed of two parts, i.e., three layers steerable module (two layers for the first and one for the second part), which is a combination of Local Binary Convolution (LBC)[19] and Active Rotating Filters (ARFs)[38]. Through replacing the basic convolution layer in DCNN with LBoMs, RI-LBCNN can be easily implemented and LBoM can be naturally inserted to other popular models without any extra modification to the optimisation process. Meanwhile, the proposed RI-LBCNN thus can be easily trained end to end. Extensive experiments show that the updating with the proposed LBoMs leads to significant reduction of learnable parameters and the reasonable performance improvement on three benchmarks.

Original languageEnglish
Title of host publicationProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1210-1219
Number of pages10
ISBN (Electronic)9781538610343
DOIs
Publication statusPublished - 1 Jul 2017
Externally publishedYes
Event16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017 - Venice, Italy
Duration: 22 Oct 201729 Oct 2017

Publication series

NameProceedings - 2017 IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Volume2018-January

Conference

Conference16th IEEE International Conference on Computer Vision Workshops, ICCVW 2017
Country/TerritoryItaly
CityVenice
Period22/10/1729/10/17

Fingerprint

Dive into the research topics of 'Rotation Invariant Local Binary Convolution Neural Networks'. Together they form a unique fingerprint.

Cite this