RHINE: Relation Structure-Aware Heterogeneous Information Network Embedding

Chuan Shi, Yuanfu Lu, Linmei Hu*, Zhiyuan Liu, Huadong Ma

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Heterogeneous information network (HIN) embedding aims to learn the low-dimensional representations of nodes while preserving structures and semantics in HINs. Although most existing methods consider heterogeneous relations and achieve promising performance, they usually employ one single model for all relations without distinction, which inevitably restricts the capability of HIN embedding. In this paper, we argue that heterogeneous relations have different structural characteristics, and propose a novel Relation structure-aware HIN Embedding model, called RHINE. By exploring four real-world networks with thorough analysis, we present two structure-related measures which consistently distinguish heterogeneous relations into two categories: Affiliation Relations (ARs) and Interaction Relations (IRs). To respect the distinctive structural characteristics of relations, in RHINE, we propose different models specifically tailored to handle ARs and IRs, which can better capture the structures in HINs. Finally, we combine and optimize these models in a unified manner. Furthermore, considering that nodes connected via heterogeneous relations may have multi-aspect semantics and each relation focuses on one aspect, we introduce relation-specific projection matrices to learn node and relation embeddings in separate spaces rather than a common space, which can better preserve the semantics in HINs, referring to a new model RHINE-M. Experiments on four real-world datasets demonstrate that our models significantly outperform the state-of-the-art methods in four tasks.

Original languageEnglish
Pages (from-to)433-447
Number of pages15
JournalIEEE Transactions on Knowledge and Data Engineering
Volume34
Issue number1
DOIs
Publication statusPublished - 1 Jan 2022
Externally publishedYes

Keywords

  • Heterogeneous information network
  • Network embedding
  • Social network analysis

Fingerprint

Dive into the research topics of 'RHINE: Relation Structure-Aware Heterogeneous Information Network Embedding'. Together they form a unique fingerprint.

Cite this