TY - JOUR
T1 - Revealing the Quantum-Confined Free Exciton A Anisotropic Emission in a CdS/CdS:SnS2 Superlattice Nanocone via Angle-Resolved Photoluminescence Spectroscopy
AU - Tian, Ye
AU - Zhang, Yongyou
AU - Peng, Hui
AU - Yao, Shangfei
AU - Huang, Tao
AU - Peng, Chengyu
AU - Yu, Zongmian
AU - Ge, Shuaigang
AU - Zou, Bingsuo
N1 - Publisher Copyright:
© 2022 American Chemical Society
PY - 2022/1/20
Y1 - 2022/1/20
N2 - The nanostructures with exciton anisotropic emission are important in many applications due to the directionality of the flow of photons and the exciton confinement. Moreover, it is still a challenge to observe exciton anisotropic emission directly due to the limitation of measurement techniques and materials. Here, we observed the anisotropy of free exciton A (FXA) in a CdS/CdS:SnS2 superlattice nanocone by angle-resolved photoluminescence (ARPL) spectroscopy. Raman spectra and in situ spectral mapping indicate quasi-periodic SnS2 layers perpendicular to the nanocone within the CdS/CdS:SnS2 superlattice nanocone. Polarization-dependent ARPL spectra discriminated two exciton series, namely, FXA and free exciton B (FXB). By comparing different CdS nanostructures, FXA is found to be omniscient in different samples, but it is even significant in the CdS/CdS:SnS2 superlattice nanocone due to the local dielectric confinement of SnS2 layers in the nanocone and the enhanced anisotropic exciton–phonon coupling. Meanwhile, ARPL spectra indicated that the FXA emission blue shifts with reducing cross-sectional radius, while the FXB emission does not. The comprehensive understanding of the FXA anisotropic emission and quantum confinement effect in the CdS/CdS:SnS2 superlattice nanocone may trigger the potential applications in future anisotropy-polarized devices and wavelength-tuning lasers.
AB - The nanostructures with exciton anisotropic emission are important in many applications due to the directionality of the flow of photons and the exciton confinement. Moreover, it is still a challenge to observe exciton anisotropic emission directly due to the limitation of measurement techniques and materials. Here, we observed the anisotropy of free exciton A (FXA) in a CdS/CdS:SnS2 superlattice nanocone by angle-resolved photoluminescence (ARPL) spectroscopy. Raman spectra and in situ spectral mapping indicate quasi-periodic SnS2 layers perpendicular to the nanocone within the CdS/CdS:SnS2 superlattice nanocone. Polarization-dependent ARPL spectra discriminated two exciton series, namely, FXA and free exciton B (FXB). By comparing different CdS nanostructures, FXA is found to be omniscient in different samples, but it is even significant in the CdS/CdS:SnS2 superlattice nanocone due to the local dielectric confinement of SnS2 layers in the nanocone and the enhanced anisotropic exciton–phonon coupling. Meanwhile, ARPL spectra indicated that the FXA emission blue shifts with reducing cross-sectional radius, while the FXB emission does not. The comprehensive understanding of the FXA anisotropic emission and quantum confinement effect in the CdS/CdS:SnS2 superlattice nanocone may trigger the potential applications in future anisotropy-polarized devices and wavelength-tuning lasers.
UR - http://www.scopus.com/inward/record.url?scp=85122706779&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcc.1c09755
DO - 10.1021/acs.jpcc.1c09755
M3 - Article
AN - SCOPUS:85122706779
SN - 1932-7447
VL - 126
SP - 1064
EP - 1075
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 2
ER -