Research on improving the authenticity of simulated infrared image using adversarial networks

Xuejian Li, Chengpo Mu*, Ruiheng Zhang, Yu Yang, Yanjie Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

When the real infrared image is insufficient, the simulation infrared image is an important data supplement to the real infrared image. However, the authenticity of simulated infrared image often does not meet the requirements of real images. So improving the authenticity of simulated infrared image plays an important role in related fields. In order to achieve this goal, a method based on deep learning is proposed in this paper. Unlike traditional methods of using manual modification by experience, the proposed method can convert non-realistic simulation infrared image input into a realistic one with similar scene structure. First, we generate a large number of simulation infrared images through the simulation system. Then, we propose an optimization method to improve the authenticity of simulated infrared images. Finally, we designed a comparison experiment between the original simulation infrared image and the optimized simulation infrared image, and finally verify the effectiveness.

Original languageEnglish
Title of host publicationEleventh International Conference on Digital Image Processing, ICDIP 2019
EditorsJenq-Neng Hwang, Xudong Jiang
PublisherSPIE
ISBN (Electronic)9781510630758
DOIs
Publication statusPublished - 2019
Event11th International Conference on Digital Image Processing, ICDIP 2019 - Guangzhou, China
Duration: 10 May 201913 May 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11179
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

Conference11th International Conference on Digital Image Processing, ICDIP 2019
Country/TerritoryChina
CityGuangzhou
Period10/05/1913/05/19

Keywords

  • Generative adversarial network
  • Infrared image processing
  • Optimize method
  • Simulation infrared images

Cite this