Abstract
An effective remote sensing image scene classification approach using patch-based multi-scale completed local binary pattern (MS-CLBP) features and a Fisher vector (FV) is proposed. The approach extracts a set of local patch descriptors by partitioning an image and its multi-scale versions into dense patches and using the CLBP descriptor to characterize local rotation invariant texture information. Then, Fisher vector encoding is used to encode the local patch descriptors (i.e., patch-based CLBP features) into a discriminative representation. To improve the discriminative power of feature representation, multiple sets of parameters are used for CLBP to generate multiple FVs that are concatenated as the final representation for an image. A kernel-based extreme learning machine (KELM) is then employed for classification. The proposed method is extensively evaluated on two public benchmark remote sensing image datasets (i.e., the 21-class land-use dataset and the 19-class satellite scene dataset) and leads to superior classification performance (93.00% for the 21-class dataset with an improvement of approximately 3% when compared with the state-of-the-art MS-CLBP and 94.32% for the 19-class dataset with an improvement of approximately 1%).
Original language | English |
---|---|
Article number | 483 |
Journal | Remote Sensing |
Volume | 8 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2016 |
Externally published | Yes |
Keywords
- Completed local binary patterns
- Extreme learning machine
- Fisher vector
- Multi-scale analysis
- Remote sensing image scene classification