Reliability evaluation of phased-mission systems exposed to random shocks

Peng Su, Keyong Zhang, Qingan Qiu*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    1 Citation (Scopus)

    Abstract

    The paper aims to examine the reliability analysis problem of phased-mission systems that execute multiple consecutive non-overlapping mission phases in a random shock environment. Each phase is carried out by several subsystems which consist of non-repairable components connected in different topology configurations. The random shocks, modeled by a Poisson process, significantly affect the failure rate of components within the dynamic subsystems. The system configuration, success criteria, and component failure behavior may differ from phase to phase. The paper presents technical methodologies to evaluate the mission success probabilities of subsystems in various configurations and proposes a modularization method to compute the reliability of phased-mission systems by combining the mission success probabilities of all subsystems. Finally, a numerical example is provided to illustrate the proposed model and method.

    Keywords

    • Phased-mission systems
    • Poisson process
    • mission success probability
    • modularization method
    • non-overlapping mission

    Fingerprint

    Dive into the research topics of 'Reliability evaluation of phased-mission systems exposed to random shocks'. Together they form a unique fingerprint.

    Cite this