ReCU: Reviving the Dead Weights in Binary Neural Networks

Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong Tian, Rongrong Ji*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

69 Citations (Scopus)

Abstract

Binary neural networks (BNNs) have received increasing attention due to their superior reductions of computation and memory. Most existing works focus on either lessening the quantization error by minimizing the gap between the full-precision weights and their binarization or designing a gradient approximation to mitigate the gradient mismatch, while leaving the “dead weights” untouched. This leads to slow convergence when training BNNs. In this paper, for the first time, we explore the influence of “dead weights” which refer to a group of weights that are barely updated during the training of BNNs, and then introduce rectified clamp unit (ReCU) to revive the “dead weights” for updating. We prove that reviving the “dead weights” by ReCU can result in a smaller quantization error. Besides, we also take into account the information entropy of the weights, and then mathematically analyze why the weight standardization can benefit BNNs. We demonstrate the inherent contradiction between minimizing the quantization error and maximizing the information entropy, and then propose an adaptive exponential scheduler to identify the range of the “dead weights”. By considering the “dead weights”, our method offers not only faster BNN training, but also state-of-the-art performance on CIFAR-10 and ImageNet, compared with recent methods. Code can be available at https://github.com/z-hXu/ReCU.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages5178-5188
Number of pages11
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: 11 Oct 202117 Oct 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period11/10/2117/10/21

Fingerprint

Dive into the research topics of 'ReCU: Reviving the Dead Weights in Binary Neural Networks'. Together they form a unique fingerprint.

Cite this