TY - GEN
T1 - ReCU
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
AU - Xu, Zihan
AU - Lin, Mingbao
AU - Liu, Jianzhuang
AU - Chen, Jie
AU - Shao, Ling
AU - Gao, Yue
AU - Tian, Yonghong
AU - Ji, Rongrong
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Binary neural networks (BNNs) have received increasing attention due to their superior reductions of computation and memory. Most existing works focus on either lessening the quantization error by minimizing the gap between the full-precision weights and their binarization or designing a gradient approximation to mitigate the gradient mismatch, while leaving the “dead weights” untouched. This leads to slow convergence when training BNNs. In this paper, for the first time, we explore the influence of “dead weights” which refer to a group of weights that are barely updated during the training of BNNs, and then introduce rectified clamp unit (ReCU) to revive the “dead weights” for updating. We prove that reviving the “dead weights” by ReCU can result in a smaller quantization error. Besides, we also take into account the information entropy of the weights, and then mathematically analyze why the weight standardization can benefit BNNs. We demonstrate the inherent contradiction between minimizing the quantization error and maximizing the information entropy, and then propose an adaptive exponential scheduler to identify the range of the “dead weights”. By considering the “dead weights”, our method offers not only faster BNN training, but also state-of-the-art performance on CIFAR-10 and ImageNet, compared with recent methods. Code can be available at https://github.com/z-hXu/ReCU.
AB - Binary neural networks (BNNs) have received increasing attention due to their superior reductions of computation and memory. Most existing works focus on either lessening the quantization error by minimizing the gap between the full-precision weights and their binarization or designing a gradient approximation to mitigate the gradient mismatch, while leaving the “dead weights” untouched. This leads to slow convergence when training BNNs. In this paper, for the first time, we explore the influence of “dead weights” which refer to a group of weights that are barely updated during the training of BNNs, and then introduce rectified clamp unit (ReCU) to revive the “dead weights” for updating. We prove that reviving the “dead weights” by ReCU can result in a smaller quantization error. Besides, we also take into account the information entropy of the weights, and then mathematically analyze why the weight standardization can benefit BNNs. We demonstrate the inherent contradiction between minimizing the quantization error and maximizing the information entropy, and then propose an adaptive exponential scheduler to identify the range of the “dead weights”. By considering the “dead weights”, our method offers not only faster BNN training, but also state-of-the-art performance on CIFAR-10 and ImageNet, compared with recent methods. Code can be available at https://github.com/z-hXu/ReCU.
UR - http://www.scopus.com/inward/record.url?scp=85121021761&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00515
DO - 10.1109/ICCV48922.2021.00515
M3 - Conference contribution
AN - SCOPUS:85121021761
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 5178
EP - 5188
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 11 October 2021 through 17 October 2021
ER -