Recovering Brain Structural Connectivity from Functional Connectivity via Multi-GCN Based Generative Adversarial Network

Lu Zhang*, Li Wang, Dajiang Zhu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

23 Citations (Scopus)

Abstract

Understanding brain structure-function relationship, e.g., the relations between brain structural connectivity (SC) and functional connectivity (FC), is critical for revealing organizational principles of human brain. However, brain’s many-to-one function-structure mode, i.e., diverse functional patterns may be associated with the same SC, and the complex direct/indirect interactions in both structural and functional connectivity make it challenge to infer a reliable relationship between SC and FC. Benefiting from the advances in deep neural networks, many deep learning based approaches are developed to model the complex and non-linear relations that can be overlooked by traditional shallow methods. In this work, we proposed a multi-GCN based generative adversarial network (MGCN-GAN) to infer individual SC based on corresponding FC. The generator of MGCN-GAN is composed by multiple multi-layer graph convolution networks (GCNs) which have the capability to model complex indirect connections in brain connectivity. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more effectively. We tested our model on Human Connectome Project (HCP) dataset and the proposed MGCN-GAN model can generate reliable individual SC based on FC. This result implies that there may exist a common regulation between specific brain structural and functional architectures across different individuals.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages53-61
Number of pages9
ISBN (Print)9783030597276
DOIs
Publication statusPublished - 2020
Externally publishedYes
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: 4 Oct 20208 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12267 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Country/TerritoryPeru
CityLima
Period4/10/208/10/20

Keywords

  • Functional connectivity
  • Generative adversarial network
  • Graph convolution networks
  • Structural connectivity

Fingerprint

Dive into the research topics of 'Recovering Brain Structural Connectivity from Functional Connectivity via Multi-GCN Based Generative Adversarial Network'. Together they form a unique fingerprint.

Cite this