TY - GEN
T1 - Query expansion using term relationships in language models for information retrieval
AU - Bai, Jing
AU - Song, Dawei
AU - Bruza, Peter
AU - Nie, Jian Yun
AU - Cao, Guihong
PY - 2005
Y1 - 2005
N2 - Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
AB - Modeling (LM) has been successfully applied to Information Retrieval (IR). However, most of the existing LM approaches only rely on term occurrences in documents, queries and document collections. In traditional unigram based models, terms (or words) are usually considered to be independent. In some recent studies, dependence models have been proposed to incorporate term relationships into LM, so that links can be created between words in the same sentence, and term relationships (e.g. synonymy) can be used to expand the document model. In this study, we further extend this family of dependence models in the following two ways: (1) Term relationships are used to expand query model instead of document model, so that query expansion process can be naturally implemented; (2) We exploit more sophisticated inferential relationships extracted with Information Flow (IF). Information flow relationships are not simply pairwise term relationships as those used in previous studies, but are between a set of terms and another term. They allow for context-dependent query expansion. Our experiments conducted on TREC collections show that we can obtain large and significant improvements with our approach. This study shows that LM is an appropriate framework to implement effective query expansion.
KW - Information flow
KW - Language model
KW - Query expansion
KW - Term relationships
UR - http://www.scopus.com/inward/record.url?scp=33745802837&partnerID=8YFLogxK
U2 - 10.1145/1099554.1099725
DO - 10.1145/1099554.1099725
M3 - Conference contribution
AN - SCOPUS:33745802837
SN - 1595931406
SN - 9781595931405
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 688
EP - 695
BT - CIKM'05 - Proceedings of the 14th ACM International Conference on Information and Knowledge Management
T2 - CIKM'05 - Proceedings of the 14th ACM International Conference on Information and Knowledge Management
Y2 - 31 October 2005 through 5 November 2005
ER -