Abstract
Smart actuators have a wide range of applications in bionics and energy conversion. The ability to reconfigure shape is essential for soft actuators to achieve various shapes and deformations, which is a crucial feature for next-generation actuators. Nonetheless, it is still an enormous challenge to establish a straightforward approach to creating programmable and reconfigurable actuators. MXene-cellulose nanofiber composite film (MCCF) with a brick-and-mortar hierarchical structure was produced through a vacuum filtration process. MCCF demonstrates impressive mechanical properties such as a tensile stress of 68 MPa and a Young’s modulus of 4.65 GPa. Besides, the MCCF highlights its potential for water-assisted shaping/welding due to the abundance of hydrogen bonds between MXene and cellulose nanofibers. MCCF also showcases capabilities as a humidity-driven actuator with a rapid response rate of 550°·s−1. Using the methods of water-assisted shaping/welding, several bionic actuators (such as flower, butterfly, and muscle) based on MCCF were designed, highlighting their versatility in applications of smart actuators. The research showcases the impressive capabilities of MXene-based actuators and offers beneficial insights for the advancement of future intelligent materials. (Figure presented.)
Original language | English |
---|---|
Pages (from-to) | 6619-6629 |
Number of pages | 11 |
Journal | Nano Research |
Volume | 17 |
Issue number | 7 |
DOIs | |
Publication status | Published - Jul 2024 |
Keywords
- cellulose nanofibers
- humidity-driven
- MXene
- programmable actuators